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Spectral sensitivity functions for
humans and imagers: 1861 to 2004
John J. McCann, McCann Imaging

Four distinct scientific disciplines have contributed
to our understanding of sensitivity to wavelengths
between 400 and 700nm, both for human vision
and color imagers. These are physics, physiology,
psychophysics, and the practical engineering of
image making.

History of color sensitivity functions
There are many different three-channel color sen-
sitivity functions. They fall into two distinct groups:
narrow, non-overlapping curves used by image
makers; and broad, overlapping curves derived
from characterizing human vision. J. C. Maxwell
described both in the 1860s. He was the first pho-
tographic color image maker. His color-matching
equations from spinning disc measurements and his
sensitivity functions from monochromator data are
the predecessors of all CIE colorimetric standards.

In 1889 Frederick Ives tried to combine
Maxwell’s two ideas. He proposed that the color
separations used to make reproductions would have
the most ‘natural’ color if the separations had the
same spectral sensitivities as humans. He published
a book and filed a US patent.1 Despite a significant
investment in the idea of using broad sensitivity
functions, Ives abandoned the idea and used nar-
row-band filters in his 1895 Kromstop color cam-
eras.

Crosstalk
Color-channel crosstalk2 is the biggest difference
between the narrow, non-overlapping sensitivity
functions of practical imaging and the broad, over-
lapping sensitivities of human vision. Let us con-
sider three colors of paper— white, gray, and red—
illuminated by three narrow-band LEDs at 625nm,
530nm and 455nm. The total long-wave response

(TLR) is:
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where I is the incident illumination, R is the % re-
flectance and LS is the long-wave channel’s sensi-
tivity for each wavelength used. The long-wave sen-
sors’ primary response is to 625nm: at 530nm and
455nm the response is crosstalk.

Imaging systems minimize crosstalk as much as
possible. With no crosstalk LS

530 
= 0 and LS

455 
= 0,

then the TLR = (I
625

×R
625 

×LS
625

), limited to the pri-
mary response. The white paper has R

625×
=90%,

R
530

=90%,
 
R

455
=90%; the red paper has R

625×
=90%,

R
530

=12%,
 
R

455
=8%. The TLR of both white and red

papers is (0.9×I
625

 ×LS
625

).
The broad human sensitivities generate substan-

tial crosstalk; the red paper shows a significant
change in responses with illumination. With
crosstalk, the TLR is the combination of 90%, 12%
and 8% reflectances in the proportions determined
by the values of I and LS. Substantial increases in
530nm and 455nm illuminants relative to 625nm
reduce the fraction of primary response in the TLR.
The effect of crosstalk is to reduce the chroma of
the red paper. The amount of reduction depends on
the proportions of the illuminants. Parallel analy-
ses hold for all color channels.

Despite the seductiveness of Ives’s ‘natural color’
idea, all reproduction processes avoid crosstalk be-
cause it severely limits color gamut. As shown
above, spectral crosstalk compresses the range of
chromatic colors. At the receptor stage, the achro-
matic scale from white to black has a greater range
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Do we really need spectral imaging?
Jussi Parkkinen and Timo Jaaskelainen, University of Joensuu; Esa Torniainen, M-real Corporation

Color science is one of a
number that has been
around since the ancient
Greeks. The earliest theo-
ries about color naturally
related to the prevalent view
of nature at the time: color
was understood as a sub-
stance coming from an ob-
ject to the eye. Newton was
the first who showed and
understood the spectral
theory of color. He discov-
ered that, for instance, white
is not one of the primary
colors, but a combination of
separate hues. These hues
correspond to different
wavelengths of electromag-
netic radiation, including
light, and the wavelength
distribution can be ex-
pressed as a color spectrum.
In practice, light from all natural objects has
some intensity of all wavelengths, so the ob-
served color is dependent on the relative distri-
bution of wavelengths in the spectrum.

This understanding of the real physical na-
ture of color lead to developments in the un-
derstanding of human color vision in late-19th
early-20th centuries. The human vision model
is based on the fact that there are three types of
color-sensitive cells, cones, in the human retina.
Each of these has a slightly different light-sen-
sitivity function than the others. For this rea-
son, the color signal—i.e. the spectrum—is rep-
resented as three values in the human visual
system. This is the basis for all standard three-
dimensional color-coordinate systems, which
can be derived from the theoretically-defined
human tristimulus values. These standard color
representations are widely used in industry as
references in quality control: for producing
colors either on digital or printed media, or in
color measurement systems etc.

So, when do we need spectral color?
Spectral color, also referred as multispectral

color, means the representation of color in the
form of a spectrum rather than three values. The
idea is to preserve in the color measurement
and process as much information as possible.
The spectrum carries all the information that
produces the human color sensation when the
light reaches the eye, and is therefore the most
basic way to represent color. All the standard
three-dimensional representations can be com-
puted from the spectrum.

Figure 1 shows an example where a spec-

trum is needed. There are two color spectra
from two different objects. The standard
CIELAB values under daylight illumination are
the same for both of the spectra: L* = 66.90,
a* = 11.94, and b* = -24.60. Under tungsten
bulb illumination, the standard CIELAB-val-
ues are: L* = 66.37, a* = 5.27, and b* = -24.16
for one spectrum and L* = 66.51, a* = -5.80,
and b* = -22.84 for the other. For example, here
we need spectral color representation in order
to get better quality control in production. When
the color quality is defined by standard
CIELAB coordinate system, even high-qual-
ity requirements can been reached in principle,
but not in practice, due to this possibility of
difference in the spectrum. The example above
could have a practical use in the paper or tex-
tile industry, where customers set color-qual-
ity requirements in CIELAB values under day-
light illumination, but the actual products are
viewed in a room with tungsten bulb illumina-
tion. This can be the case in the paper industry
for different production sets, and in the textile
industry for separate garments produced in dif-
ferent factories.

In the printing industry, the need for spec-
tral color is also clear. Color printing can be
tuned better using spectral approach and the
new generation of printers will use more col-
ors. Such printer will also need the spectral ap-
proach for reasonable color management. Fi-
nally, in the digital world, the spectral approach
allows us to manage and show colors as accu-
rately as possible, so that the ambient illumi-
nation can be taken into account. This provides

Figure 1. Two metameric spectra that look the same in daylight, but different under tungsten bulb
illumination.

opportunities for digital
proofing in printing indus-
try and high-quality color
reproduction in e-Com-
merce and in telemedicine.

In general one can say
that, in three-dimensional
coordinate systems such as
RGB, one can produce
nice-looking and beautiful
colors and color images.
However, only by using the
spectral approach can one
produce the correct colors
and color images. As one of
our industrial partners said,
“Using only standard three-
dimensional color-coordi-
nate systems and no color
spectra is like developing
Formula 1 racing cars based
on noise and exhaust.”

So, perhaps the real ques-
tion is, “Do we really need three-dimensional
color coordinate systems?”

Jussi Parkkinen, Timo Jaaskelainen, and
Esa Torniainen*
University of Joensuu, Joensuu, Finland
E-mail: Jussi.Parkkinen@cs.joensuu.fi
*M-real Corporation
Virkkala, Finland
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Spectral imaging at Chiba University:
past, present and future
Prof. Yoichi Miyake, Director of Research Center for Frontier Medical Engineering, Chiba University

In general, the quality of an image
is determined by sharpness, tone-
reproduction characteristics, color
reproduction, graininess, texture,
gross distortion, and so on. We con-
sider here the color reproduction
characteristics of an object, which
is dependent on many factors. These
include the spectral characteristics
of the illumination during both im-
age acquisition and viewing, and
those of imaging system. Record-
ing the spectral reflectance of the
object will ensure that the color re-
production of the object is indepen-
dent of illumination. However, this
places special demands on both im-
aging acquisition and color repro-
duction systems.

For a decade, such color manage-
ment has been required for device-
independent color reproduction and
color transformation between dif-
ferent imaging systems. As a result,
spectral recording and reproduction
methods based on object reflectance
spectra have been taken up by many
scientists in preference to the con-
ventional colorimetric method
based on tri-stimulus values.

In 1988, we developed a new en-
doscopic spectrophotometer for
measuring the spectral reflectance
of the gastric mucous membrane in
cooperation with Olympus Optical
Co. Ltd.. Figure 1 shows the block
diagram of this device. We used this
to acquire spectra from many dif-
ferent subjects, and the spectral re-
flectance of the membranes tested
were analyzed using principal com-
ponent analysis. The results indi-
cated that the reflectance spectra of
many of these could be adequately
described using just three principal
components: including human skin.

Based on these experimental re-
sults, we showed that the reflec-
tance spectra of all pixels represent-
ing the gastric mucous membrane
or human skin could be calculated
from the RGB signals taken using
our electronic endoscope and CCD
camera. It thus became possible to
improve the color reproduction of

Figure 1. Lock diagram of the endoscopic spectrophotometer.

Figure 2. Schematic diagram of the gonio-spectral imaging system.

Figure 3. Three-dimensional representation of the object with information
about both shape and spectral reflectance.

these objects in various kinds of
imaging systems using computer
simulation techniques. For ex-
ample, we were able to optimize
the spectral transmittance of sepa-
ration filters for improving the im-
age capture of the gastric mucous
membrane. Using spectral print-
ing, it was also possible to do spec-
tral color reproduction of the ac-
quired images to improve color
rendition in different illuminant
and viewing conditions.

For applications in the arts, in
1997 we developed a multi-band
camera to record the reflectance
spectra of paintings based on prin-
cipal-component analysis and
Wiener estimation method. The
camera consists of a single chip
CCD with a rotating color wheel
comprising five filters. This cam-
era was effectively used to acquire
digital archives, as well as for fun-
damental research on spectral im-
aging. We also developed gonio-
spectral imaging systems (see Fig-
ure 2) that allow us to simulta-
neously record the spectral and
shape information of three-dimen-
sional objects (see Figure 3).

In addition to developing sys-
tems, in 1999 we organized the
first international conference on
multispectral imaging. Since then,
the International Conference on
Multispectral Imaging (MSI) has
become an annual event. It was
held at Chiba University again in
2000, then at the University of
Joensuu, in Tokyo, in Rochester,
and in Aachen. Future events are
planned for Granada in 2005 and
San Jose in 2006.

We believe that the spectral im-
aging has many applications in
science, technology, and industry
and our results show only the be-
ginning of these possibilities. We
look forward to extending our co-
operation to many international or-
ganizations and companies, and
hope that many more fields of ap-

Continues on page 8.
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Estimation of fluorescent scene illuminant
using spectral imaging
Shoji Tominaga, Department of Engineering Informatics, Osaka Electro-Communication University

Most studies on the problem of esti-
mating scene illumination assume a
continuous spectral-power distribution
like that of an incandescent lamp light
or natural daylight.1 Illuminants with
spectral-power distributions that in-
clude spikes, such as fluorescent light-
ing, have thus been neglected. The
spectral distribution of a such a  lamp
shows strong spectral lines together
with a weaker, continuous portion of
the spectrum. Illuminant spectra with
spikes cannot be represented at all
when using linear models with smooth
basis functions.

The illuminant classification ap-
proach is useful for inferring scene il-
lumination with a spiky spectrum.2 We
have proposed a method of classify-
ing fluorescent scene illumination us-
ing a spectral-camera system with nar-
row-band filtration. The spectral shape
is decomposed into two parts—spikes and con-
tinuum—that correspond, respectively, to the
bright-line and background-continuous spec-
tra. We note that wavelengths of the line spec-
trum are inherent to the fluorescent material
used in the lamp, so it is possible to infer the
material class of fluorescent light source by
knowing the wavelength positions of spikes on
the observed illuminant spectrum.

Spectral camera
The system is composed of a liquid-crystal tun-
able (LCT) filter, a monochrome CCD cam-
era, and a personal computer. We sample the
visible wavelength range (400-700nm) at in-
tervals of 5nm, acquiring monochromatic im-
ages at 61 wavelengths. Moreover, we capture
additional images at eight wavelengths that
correspond to the bright lines of the most com-
mon fluorescent lamps. Figure 1 shows the
spectral-sensitivity functions of the camera
system. The bandwidths are about 20nm. The
bold curves in Figure 1 represent the additional
sensor responses. The resulting spectral image
therefore consists of a set of 69 monochrome
images.

Basic algorithm
The spectral curve of the fluorescent light is
divided into several peak areas and a back-
ground continuum. The set of the peak wave-
lengths found provides the key to identifying
the unknown fluorescent light source when we

observe the scene illumination. First, we
estimate spectral radiance from the cam-
era outputs. Under the narrow-band as-
sumption for each sensor, the spectral ra-
diance is estimated in the form Y

k 
(x)=p

k
(x)/R

k 
(k=1, 2, …, 69), where p

k
(x)  is the

camera output at spatial location x and R
k

is the sensor impulse response of k-th chan-
nel. We use the gray-world assumption.
Then, the illuminant spectra is roughly es-
timated as the average spectral radiance Y

k
over the entire location x.

However, peak detection using the aver-
age spectral radiance is not always stable.

This average curve has no sharp peaks,
so that the peak positions do not exactly cor-
respond to the wavelengths of the fluores-
cent peaks. This is because the spectral sen-
sitivity functions of the spectral camera are
not ideal narrow bands. In order to detect
spiky peaks on illuminant spectra, we pro-
pose use of the second derivative of the
spectral camera outputs. The first derivative,
called the gradient, calculates a slope of the
spectral curve at each channel wavelength. The
second derivative, called the Laplacian, calcu-
lates the divergence of the gradient of the spec-
tral curve.

Experimental results
We have performed an experiment using the
MacBeth Color Chart (shown) with the Mel-
low 5D as a light source. Figure 2 shows all

outputs of the 69-channel spectral camera: there
are no clear peaks. We therefore take the sec-
ond-derivative spectra for all camera outputs.
Figure 3 shows the average curve of the sec-
ond derivatives. Sharp peaks are clearly gen-
erated, and the respective peak positions are
coincident with the original fluorescent wave-
lengths on the measured illuminant spectrum

Figure 1. Spectral-sensitivity functions of the spectral
camera system.

Figure 2. Outputs of the spectral camera with 69 channels
for the Macbeth Color Chart under Mellow 5D illumination.

Figure 3. Average of the second-derivative spectra for
all camera outputs.

Continues on page 8.
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Challenges in color reproduction:
towards higher dimensions
Raja Bala, Principal Scientist, Xerox Imaging and Services Technology Center

Continues on page 10.

Today’s color management systems are largely
based on pixel-wise processing of three-chan-
nel color data. We believe this simple repre-
sentation does not adequately reproduce the
color experience for the user, and that addi-
tional dimensions must be considered to more
fully convey color information in imagery.

The spectral dimension
It is well known that a three-channel colori-
metric representation does not fully capture the
information necessary to reproduce color
across different viewing conditions. Therefore,
one approach that should be considered when
discussing higher dimensions of color is using
a spectral representation. However, it is im-
portant to distinguish between spectral repre-
sentation for color measurement vs. spectral
representation of images.

With regard to spectral measurement, today
a variety of instruments offer different capa-
bilities ranging from single-channel densito-
meters to three-channel colorimeters to spec-
trophotometers that measure 30 or more
narrowband channels. The use of narrowband
reflectance spectra can significantly improve
the accuracy of color modeling and character-
ization, especially for printers.1 Additionally,
the necessary instrumentation has become
more affordable and convenient to use over
time: we can therefore expect that spectral
measurement will become more commonplace
in mainstream color-management applications.

Spectral representation of image data (so-
called spectral imaging) has also been of much

interest. The main touted advantage is the elimi-
nation of metamerism (change of color in dif-
ferent conditions), but the technique also re-
duces bandwidth requirements by exploiting
the fact that most naturally-occurring spectra
are smooth, and thus adequately represented
by a few (three to eight) basis functions.2 There
have been substantial research efforts both in
the capture and reproduction of multispectral
images and,3 in the standards arena, the CIE
has devoted a technical committee to the topic
of spectral imaging.

Despite the attention that has gone into this
area, it has not made its way into mainstream
imaging applications. We feel that this is be-
cause the cost of spectral image capture and
reproduction is only worth the benefits gained
for a few niche applications that are intolerant
to metamerism artifacts, e.g. artwork reproduc-
tion.3

The spatial dimension
It has long been known that human color per-
ception is strongly affected by spatial context.
This effect is predicted to some extent by color
appearance models such as CAM02.4 However,
such classic models are only applicable under
certain restrictive conditions and do not ad-
equately predict the appearance of complex
images. We are beginning to see attempts to
predict image appearance, as with the image
color-appearance model (iCAM).5 The CIE has
also devoted technical committees towards the
development of color-appearance and -differ-
ence models that can be applied towards com-

plex images.
Typical color mappings, however, are essen-

tially still pixel-wise operations. The transforms
are derived using metrics based only on color
coordinates, and do not account for the spatial
structure of the image. A classic example is
gamut-mapping, where the algorithm that mini-
mizes a pixelwise color-difference metric of-
ten results in loss of texture and edge informa-
tion.6

We have developed a simple framework to
incorporate a spatial component in color map-
pings, as depicted in Figure 1. In this frame-
work, T is a standard pixel-wise color mapping,
such as a gamut-mapping operation. To restore
important spatial information lost by T, a dif-
ference is taken between the input and mapped
image in a suitable space, governed by func-
tion f

1
. The difference image is processed

through a spatial filter H that only retains cer-
tain frequency bands of interest. The filtered
difference image is then re-inserted into the
transformed image after post-processing de-
noted by f

2
. This framework has been success-

fully used for color gamut mapping6 and color-
to-grayscale mappings.7

A related application that benefits from spa-
tial processing is the reproduction of high-dy-
namic-range (HDR) images, which typically
requires compression from a dynamic range of
10000:1 for the scene to approximately 300:1
for a standard display. Here, too, there has been
an evolution from pixel-wise tone mapping (or

Figure 1. A simple model for introducing spatial context into a color mapping.
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Effects of spectral information changes
on spatial color computation
Alessandro Rizzi, Davide Gadia, and Daniele Marini, Università degli Studi di Milano

Color sensation comes from the interac-
tion between spectral light distributions
and surface reflectances. To produce this
sensation, an observer (real or electronic)
is needed and either color matching func-
tions (CMFs) or alternative integration
curves have to convert continuous spec-
tral information into a limited number of
chromatic values (usually a triplet). Here
we describe work intended to verifying
the robustness of a computational model
of spatial color appearance in relation to
changes in the acquisition of spectral in-
formation.

The basic idea is that human vision is
the result of evolution; it acquires visual
information in a smart way and is robust
against highly-varying observation con-
ditions. Vision is not just a trivial acqui-
sition of pixels: lightness and color sen-
sations are the result of human vision
system’s ability to adapt and perform
cortical ‘computations’ that make it a
more versatile visual acquisition ‘instru-
ment’. In other words, spatial distribu-
tion of visual information in the scene
strongly affects lightness and color ap-
pearance.

There are several models that accom-
plish spatial color computation: in this
paper we will discuss Retinex,1 since it
is well-known in the imaging community
and has been used to test changes in spa-
tial color computation with varying
illuminants and acquisition curves. In
other word, we will investigate how ro-
bust Retinex is against linear and non lin-
ear variation in the CMFs.

Test setup
We built a synthetic scene, similar to the
Cornell box,2 containing a simplified
MacBeth-like color checker that uses a
photometric ray tracer. This program can
manage the spectral characterization of
light, materials, and their interaction in a
scene, and produce a multispectral im-
age as an output. This has, for each pixel,
all the information about the spectral
high-dynamic-range (HDR) luminance
distribution with a precision of 5nm.

Synthetic HDR multispectral images
of scenes are generated using two
illuminant sets: the first has two D65
lights, while the second has one A and

one C illuminant. From these two scenes
we generated a set of high-dynamic-range
RGB images from a single viewpoint, us-
ing standard and modified CMFs. A false
color image is shown in Figure 1.

The CMFs were modified linearly by
dividing or multiplying each point of the
curve for the same constant value, or non-
linearly by substituting each value in the
curve with mean-of-neighbor curve val-
ues (moving an average of 5 to 21 val-
ues). Examples of standard and linearly-
modified CMFs are shown in Figure 2.

The HDR images, computed  with regu-
lar and modified CMFs, were converted
to standard RGB images using first a lin-
ear tone-mapping (TM) algorithm, and
then  an algorithm based on Retinex.3

Test results
Two kind of CMF curve variations were
tested: linear and non-linear.

In Table 1 we present the mean ∆E in
CIELab, computed over all pixels, for
each couple of images. They were ren-
dered under D65 illuminants after linear
manipulation of RGB CMF curves by fac-
tors of 0.5×, 4×, and 8×. Just one CMF
was modified at a time. In Table 2 we
present the same results for the scene un-
der illuminants A and C.

The linear tone map only represents the
physical computation of light distribution,
while the Retinex tone map performs a
chromatic and lightness spatial adjust-
ment. Retinex strongly compensates the
CMFs linear variations.

To simulate nonlinear variations of the
CMFs we applied a moving average of 5,
9, 15, and 21 neighboring points to each
curve. The resulting CMFs are shown in
Figure 3. In Tables 3 and 4 we present the
same measures as in Tables 1 and 2, but
with the nonlinear changes in CMFs. It is
clear that, in this case, the effects are quan-
titatively less uniform and more sensitive
to illuminant changes.

As a preliminary comment, based only
on the tests described above, variation of
CMFs seems to have more effect on physi-
cal color computation, while spatial color
computation seems to normalize this ef-
fect: Retinex tone-maps images towards

Figure 1. False color image of the synthetic test scene.

Figure 2. Examples of standard (black) and linearly modified
CMFs (shades of gray).

Figure 3. Examples of standard (black) and non-linearly modified
CMFs (shades of gray).

Continues on page 9.
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Acquiring and calibrating a large-dynamic-range
image database of natural scenes
Fuhui Long, Center for Cognitive Neuroscience, Duke University; Hanchuan Peng, Life Sciences Division, Lawrence Berkeley National Laboratory

A large database of natural images that
have a large dynamic range and have
not been distorted by the imaging pro-
cess is essential to human vision re-
search. We recently acquired a database
of natural scenes containing 1600 im-
ages taken using the Olympus C2040
digital camera. We carefully corrected
for spatial falloff, non-linearity, spec-
tral bias, blurring, and noise, and used
multiple exposures to acquire a large
dynamic range for each image.

Spatial falloff—caused by the cosine
4th law and by vignetting inherent in
most digital cameras1—refers to the
fact that pixel intensity attenuates as the
distance between the pixel and the im-
age center increases. We corrected this
by taking images of a uniformly-illu-
minated Macbeth white-balance card
that filled the camera’s entire field of
view. By computing the ratio between
the intensity of a given pixel and the
average intensity of pixels in the cen-
tral 2% of the image, we were able to
obtain a function that describes the at-
tenuation coefficient at each pixel. We
then correct spatial falloff by dividing
the intensity of each pixel with its cor-
responding coefficient. This process
was repeated for each aperture and fo-
cal length used when acquiring the da-
tabase.

Responses in the red, green, and blue
channels of the Olympus C2040 are
nonlinear functions of the incident light
intensity. To recover the linear relation-
ship, we uniformly illuminated the
standard Macbeth color checker in
stable sunlight. We then measured the
RGB values and radiance spectrum of
the same light reflected from each of
the six gray patches of the checker with
the digital camera (Olympus C2040)
and a spectroradiometer (FieldSpec
HandHeld, Analytical Spectral Devices
Inc., Boulder, CO) respectively. This
process was repeated at different times
and on different days for each aperture
and shutter speed used when acquiring
the images. Taking a specific exposure
setting as the reference, we then normalized all
the measured data and used a polynomial fit-
ting to generate a reliable function of the cam-
era response. The response function for a spe-

Figure 1. Non-linearity calibration. a) Measured data (after normaliza-
tion) under 88 exposure settings. Taken by pairing four f-stop values
ranging from 2.6 to 8 and 22 shutter speed values ranging from 1/6s to
1/800s. The measurement at f7 and 1/160s was used as the reference
for normalization. b) Camera-response functions for three exposure
settings in the green channel: the solid line is f5.0, 1/400s; the dashed
line f5.0, 1/250s; and the dotted line f5.0, 1/160s.

(a)

(b)

nels under each particular exposure set-
ting into their true light intensity val-
ues.

Optical blurring was reduced by
measuring the spatial point-spread
functions of the camera and by con-
ducting inverse filtering. To reduce the
influence of noise, we frequently took
dark images with camera cap on and
subtracted the dark current from ac-
quired scene images. The method we
used to extend the dynamic range of
the images also has the effect of reduc-
ing both noise and the blooming effect.
The spectral sensitivity function was
obtained by measuring narrow-band
light (generated using a  monochroma-
tor) reflected from the Macbeth white-
balance card with the digital camera
and the spectroradiometer respec-
tively.2

In the database acquisition stage, we
fixed all the remaining settings of the
camera except for the shutter speed, ap-
erture, and zooming factor. Particu-
larly, we disabled the auto white-bal-
ancing function of the digital camera
and manually set the Macbeth white
balance card—illuminated under a
typical sunlight at noon—as the white
reference. We fixed this reference
throughout image acquisition and cali-
bration. After several images were ac-
quired, we took an image of the
Macbeth white balance card, illumi-
nated under the same lighting condi-
tions, in order to provide the white
point for modeling chromatic adapta-
tion in human vision in later statistical
analysis of the database.

To extend the dynamic range of the
images, we took five images of the
same scene under stable sunlight with
different exposure settings (determined
by the combination of shutter speed
and aperture), each differing by one
stop. The middle one was determined
by the exposure automatically mea-
sured by the camera. With these im-
ages and the camera response functions
of the corresponding exposures, we

used linear-weighted summation to combine
the five images into a single high-dynamic-

Continues on page 10.

cific exposure was then generated from this sys-
tematic function by multiplying the correspond-
ing ratios (see Figure 1). These functions thus
map the camera responses of the RGB chan-
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Continued from cover.

(shown in the broken curve in Figure 3). Thus,
the second-derivative spectrum is effective for
fluorescent-peak detection.

This method was applied to a database of
twelve fluorescent light sources (F1, F2, …,
F12 defined by CIE3) and six real fluorescent
lamps from products on the market. As a re-
sult, all the fluorescent spectral curves can be
roughly classified into three groups. The first
group (F1-F9), which we call the CIE standard
type, has main peaks at 436nm, 544nm, and
580nm. The second group, the tri-band type
(F10-F12) has its strongest lines at 436nm,
488nm, 544nm, and 612nm. Finally, the third
group—the incandescent type—has its peaks
at 436nm, 544nm, and 656nm.

Estimation of fluorescent scene illuminant
Continued from page 4.

plication will be revealed in the future. This is
a great opportunity for young scientists and
laboratories to contribute to the research and
development of multispectral imaging.

Prof. Yoichi Miyake
Director of Research Center for Frontier
Medical Engineering
Chiba University, Japan
E-Mail: miyake@faculty.chiba-u.jp
http://www.mi.tj.chiba-u.jp/~miyake/
http://www.cfme.chiba-u.jp/

Spectral imaging
at Chiba University
Continued from page 3.Shoji Tominaga

Department of Engineering Informatics
Osaka Electro-Communication University
Osaka, Japan
E-mail: shoji@tmlab.osakac.ac.jp
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than the red-cyan scale. Vision compensates
for spectral overlap by post-receptor process-
ing. In the visually-isotropic Munsell Color
Space, the distance between maximum red
(5R5/14) and maximum cyan (5BG 5/10) is
equivalent to 12 lightness steps. However,
white to black has only eight steps of the
equivalent size. In appearance, the range of
chromatic colors is greater than that of achro-
matic colors. Vision overcompensates for
crosstalk and stretches the chroma of cone re-
sponses.

Departures from perfect color constancy
Color constancy experiments show that the ap-
pearance of objects is almost constant with spec-
tral changes in illumination. These experiments
are one of many that discredited the idea that
human color vision mimics film. Color is not
uniquely determined by the quanta catch of cone
receptors.

As the explanation of constancy, von Kries
suggested that changes in spectral illumination
caused relative changes in receptor sensitivities
(called adaptation).3 Incomplete-adaptation hy-
potheses assume that the departures from per-
fect constancy are the result of imperfect adjust-
ments to changed illumination. Since incomplete
adaptation hypothesis is controlled only by illu-
mination changes, it predicts that gray and red
papers will have identical constancy departures.

Spatial comparisons
The 1960s saw the start of three major bodies of
work establishing that vision is controlled by a

Spectral sensitivity functions for humans and imagers:
1861 to 2004

number of independent channels using spatial
comparisons. Hubel and Wiesel’s neurophysi-
ology of the visual cortex,4 Fergus Campbell’s
psychophysics of spatial-frequency channels,5

and Edwin Land’s Retinex theory6 of color, all
established that vision works by spatial compari-
sons. Retinex uses these within a color channel
to establish relationships across the entire im-
age, then it compares the three color channels to
generate appearance. Here, relative quanta catch
within a channel is more important than quanta
catch at a pixel.

Recent studies7 of the departures from perfect
constancy highlight the role of crosstalk. In
Retinex, the long-wave output calculation uses
the ratio of the red paper to the white paper. This
ratio changes with relative changes in 625nm,
530nm, and 455nm illumination because the pro-
portions of crosstalk contributions change. This
observation is true for colored papers, but not
for achromatic ones. By definition, a gray paper
has the same reflectance for all wavelengths.
When the crosstalk component is the same as
the principle component, then the ratio of gray
to white is constant for all changes in illumina-
tion.2 Again, parallel analyses hold for all color
channels.

Recent experiments used 27 different combi-
nations of 625nm, 530nm, and 455nm light.
Matching data demonstrate that gray papers
showed little change in matches, while colored
papers show significant changes in appearance.
Discrepancies from perfect constancy are con-
sistent with three-channel sensor crosstalk in
spatial comparisons. They are inconsistent with

incomplete adaptation.
In summary, image makers have opted for

narrow, non-overlapping spectral sensitivities to
minimize crosstalk. Humans—limited by the
chemistry of visual pigments—use broad, over-
lapping sensitivities, with additional neural
mechanisms that overcompensate for crosstalk.
These post-receptor mechanisms generate color
constancy using spatial comparisons.

John J. McCann
McCann Imaging
Belmont, MA
E-mail: mccanns@tiac.net
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similar ∆E values in all cases. For a more de-
tailed analysis, see Reference 4.

Alessandro Rizzi, Davide Gadia,* and
Daniele Marini†
Dipartimento di Tecnologie
dell’Informazione
Università degli Studi di Milano, Italy
E-mail: rizzi@dti.unimi.it
*†Dipartimento di Informatica e
Comunicazione
Università degli Studi di Milano, Italy
E-mail: *gadia@dico.unimi.it
E-mail: †daniele.marini@unimi.it

Effects of spectral information changes
on spatial color computation

Linear changes R G B

Linear TM  47.04  65.54  67.55

Retinex TM 4.51 4.52 4.51

Linear changes R G B

Linear TM  45.81  60.48  56.13

Retinex TM 4.55 4.55 4.55

Non-linear changes R G B

Linear TM 0.70 1.32 3.53

Retinex TM 5.62 4.56 4.54

Non-linear changes R G B

Linear TM 1.10 1.26 0.97

Retinex TM 4.56 4.67 4.71

Continued from page 6.
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Table 1. Mean ∆∆∆∆∆E in CIELab for images under D65, after linear manipulation of CMFs curves by
0.5×××××, 4×××××, and 8×××××.

Table 2. Mean ∆∆∆∆∆E in CIELab for images under A and C, after linear manipulation of CMFs curves by
0.5×××××, 4×××××, and 8×××××.

Table 3. Mean ∆∆∆∆∆E in CIELab for images under D65, after non-linear transformation of CMFs curves
with 5, 9, 15, and 21 moving averages.

Table 4. Mean ∆∆∆∆∆E in CIELab for images under A and C, after non-linear transformation of CMFs
curves with 5, 9, 15, and 21 moving averages.
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quantization) operators to more sophisticated
models such as iCAM5 and Retinex8 that em-
ploy spatial operators to preserve local and glo-
bal image contrast.

The goniometric dimension
Goniometry can play an important role in color
perception. The computer graphics community
has long been using gloss models in the realis-
tic rendering of synthetic color images. In the
area of color appearance, studies have shown
that at non-specular viewing angles, the per-
ceived chroma of a color stimulus increases
with its gloss.9 This agrees with our common
experience when viewing glossy vs. matte pho-
tographic prints.

Despite recognition of the importance of
goniometry, not much progress has been made
towards incorporating it into mainstream color-
reproduction applications. Perhaps among the
first efforts to consider the goniometric aspect
in a classic color management application is
the work by Patil et al.,10 wherein a gloss model
is incorporated into a color softproofing appli-
cation. The user is able to move a softproof of
a color image in three dimensions on the dis-
play, and can visualize the effect of gloss on
the image. Experiments indicate that gloss
could be an important cue in bridging the gap
between softcopy and hardcopy media. This is
a significant first step in incorporating goni-
ometry into standard color management opera-
tions.

In conclusion, when one thinks about the
higher dimensions of color reproduction, there
is a natural proclivity to consider the spectral
aspect. This paper challenges this notion, pro-
posing instead that while a spectral represen-
tation is useful for color measurement and
modeling, greater benefit for mainstream color
imaging can be gained by considering other
dimensions, such as spatial context and image
goniometry. The recent work on spatial map-
pings and 3D softproofing marks the inception
of efforts to incorporate these additional dimen-

sions into classic color management operations.
Interestingly, these approaches often compro-
mise pixel-wise color accuracy, and yet pro-
duce superior perceived image quality. This
reiterates the fact that color perception goes
beyond colorimetric matching, and this is es-
pecially true when no original is present.

Raja Bala
Principal Scientist
Xerox Imaging and Services Technology
Center
Webster, NY
E-mail: rbala@crt.xerox.com
http://chester.xerox.com/~raja
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Challenges in color reproduction: towards higher dimensions
Continued from page 5.

range image.3
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Acquiring and calibrating a large-dynamic-range
image database of natural scenes
Continued from page 7.
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coded as foreground layers. Many existing seg-
mentation algorithms (such as those described
in References 2 and 3) can be used directly with
little modification. In the second step, only
those objects that can be represented by a con-
stant color without introducing significant vi-
sual artifacts are selected for further foreground
encoding. To test for this, the color uniformity
and geometric characteristics of a few features
are measured for each object. Conventional
color-uniformity measures may not yield the
best results for this application, as most objects
will be small and composed of thin strokes:
such objects tend to contain a higher percent-
age of edge pixels with higher-than-average
noise content.

As a result, the color uniformity test we pro-
pose tries to measure only the interior of the
object, ignoring the edge pixels. In addition,
the test requires less-strict color uniformity for
smaller and thinner objects. The objects that
are chosen are clustered in color space as the
third step. Many objects are composed of simi-
lar colors. For example, the characters in a
word, a line, a paragraph, or even an entire page
may share the same original color. Although
their color measurements after printing and
scanning may deviate from the original, their
differences typically remain small. We often
do not have the luxury of coding such objects
into different foreground layers. Grouping them
into one or several clusters and representing
each in a single foreground layer is usually suf-
ficient. The color similarity measure we use for
clustering again takes into consideration that
most objects are small and thin. To enhance
clustering accuracy and efficiency, we also use
object location and structure information. In the
final step, the image is segmented so that each
foreground layer encodes the objects from one
color cluster.

This algorithm has been extensively tested
with many different types of image.

Zhigang Fan and Timothy Jacobs
Xerox Corporation
Webster, NY
E-mail: {Zfan, Tjacobs}@crt.xerox.com
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Segmentation for mixed
raster contents
Continued from page 12.
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Segmentation for mixed raster contents with multiple
extracted constant-color areas
Zhigang Fan and Timothy Jacobs, Xerox Corporation

Mixed raster contents (MRC)1 is a
powerful image-representation concept
for achieving high compression ratios
while maintaining high reconstructed
image quality. The multiple extracted
constant color areas (MECCA) model
has several advantages including its
ease of decomposition and its inherent
text-enhancement and noise-reduction
features. Here we present a segmenta-
tion algorithm for the MRC MECCA
model. This is a four-step algorithm
that finds uniform text and other uni-
form color objects that carry detail in
an image and extracts this information
to form foreground layers. First the text
and objects are extracted from the im-
age, then they are tested for color con-
stancy, after which the objects that are
chosen are clustered in color space.
Finally, the page is segmented such that
each foreground layer codes the objects
from the same color cluster.

Different image classes require dif-
ferent levels of coding fidelity. When
compressing text, for instance, it is important
to preserve the edges. Once the text is binarized,
its compression is typically lossless. For con-
tinuous-tone images where errors in high-fre-
quency components are better masked, lossy
compression is usually employed. The MRC
model is particularly suitable for compressing
compound images such as a scanned pages
containing text and pictures. The MRC decom-
poses the raster into several image layers, each
of which can be coded efficiently with stan-
dard single-purpose compression methods.

The basic three-layer model is MRC’s most
common form. It represents the image as a bi-
nary mask and a contone foreground and back-
ground. The mask describes how to reconstruct
the final images from the other two layers.
When the mask pixel value is 1 (or 0), then the
corresponding pixel from the foreground (or
background) layer is selected for the final im-
age (see Figure 1).

The three-layer model has the disadvantage
that the resulting files, when coded as PDF, may
not be printable on some Postscript and PDF

printers. This problem can be avoided if
the decomposition contains only one
contone layer, which is what the MECCA
model does. It contains one contone back-
ground layer, N foreground layers, and N
mask layers, where N is a non-negative
integer, and the foreground layers are re-
stricted to be constant colors (see Figure
2). Although constructing MECCA is
computationally more difficult, the result-
ing PDF file is printable by almost all
Postscript printers.

Segmentation is an essential part of
implementing MRC-based coding. It
generates the masks that decide the re-
construction rules. Segmentation is even
more critical in a MECCA model than
in a three-layer model. When an image
is represented by a three-layer MRC,
segmentation errors may reduce coding
efficiency, but will typically not cause
unacceptable image-quality degradation.
However, in MECCA, anything repre-
sented in the foreground layers, typically
text and details, must be quantized in

color. This poses the risk that a segmentation
error could lead to severe color damage. On
the other hand, segmentation using MECCA
can inherently enhance text/detail quality, re-
sulting in sharpened edges and reduced noise.

The algorithm consists of four steps: object
extraction, object selection, color clustering,
and result generation. In the first step, text and
other objects are extracted from the image.
These objects are now candidates for being

Continues on page 10.

Figure 2. MRC MECCA Model.

Figure 1. MRC Three-Layer Model.


