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Differential sensing of vibration
for high-quality restoration
of motion-blurred images
As technology advances, image quality is becom-
ing more dependent on auxiliary factors than on
the imaging system itself. Among these factors is
relative motion of the camera and the object dur-
ing exposure, which leads to image blur and low-
ers image resolution. Camera vibrations, for in-
stance, may come from an unstable camera base—
as in robotics or vehicle mounted cameras—or from
other factors such as a cooling system motor in-
corporated into a forward-looking infra-red (FLIR)
camera. In many cases vibration can be of com-
plex non-sinusoidal form, have a spread spectrum
that includes frequencies close to the frame rate,
and even be non-stationary. These kinds of vibra-
tions often lead to blur that differs considerably
from frame to frame. Attempts to statistically esti-
mate the blur result in only average restoration
quality and can even destroy the image in the case
of non-stationary vibrations.

This makes necessary accurate identification of
the motion function and, based on it, a calculation
of line spread function (LSF) unique to each frame.
The more accurate the calculated LSF, the better
the quality of the restoration that can be achieved.
To this end, differential sensing of rotation vibra-
tions is proposed.1 Two dual-axis integrated accel-
erometers are attached to the imaging system at
opposite ends and close to the optical axis as pos-
sible. The longer the distance between the sensors,
the higher their output signal magnitude and dy-
namic range. By taking the difference of the two
outputs, a signal is obtained that depends on the
distance between the sensors rather than the dis-
tance from the rotation origin. Two dual-axis ac-
celerometers provide two differential signals that

represent the rotation around the two axes.
This result is highly significant for the restora-

tion of vibration-blurred images because:
• the differential output does not depend on the

location of the rotation origin, which is unknown
and is subject to changes during system opera-
tion;

• consequently, the differential output gives a ro-
bust and flat response for all frequencies of vi-
brations, which is particularly important for sys-
tems with multiple or spread-spectrum vibration
sources;

• for any given field of view, the differential out-
put does not depend on the distance between the
camera and the object; it yields pure angle infor-
mation of vibrations, which can be directly (pro-
portionally) transformed into pixels of blur;

• differential output has lower noise and larger dy-
namic range due to the output being summed
while the noise is RMS summed; it also has a
higher noise immunity to auxiliary electromag-
netic interference factors.
To obtain real-world verification for the pro-

posed differential-sensing scheme, an experimen-
tal setup was built (see Figure 1). An illuminating
visible light emitting diode (LED) was set at the
appropriate distance to have an image size of about
two pixels in diameter. A sinusoidal wave at 23Hz
frequency was supplied to an electromagnetic
shaker and a few vertically vibrated images were
sampled. The period of vibration (1/23Hz=43.5ms)
is larger than the exposure time. This causes each
video frame to have a different LSF, since blur in
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Biological communication and perceptual geometry
My research group, originally named Compu-
tational and Visual Geometry (CVG) came to
existence in the late 1980s, and its focus natu-
rally evolved to research the interplay between
computation, vision and geometry with empha-
sis on perception and the interaction between
geometry and vision. These topics merge with
high-performance computation to become a
budding branch called perceptual geometry.
The focus of perceptual geometry is to capture
the way the humans—and for that matter, other
animals and eventually other intelligent sys-
tems—come to form internal (probabilistic)
rules: their computational strategies to cope
with their environments, and to take proper
actions. For living organisms, the process of
forming such rules and the wet-ware to imple-
ment them finally settle into stable and highly
predictable patterns of behavior. The biologi-
cal process of interacting with its environment
until the animal takes action (behavior), forms
a memory of events (cognition), or responds
with specific affective changes (as in fear and
other emotion) appear to fall into a highly regu-
lar pattern with great many commonalities
across individuals. The entire process could
well be called biological information process-
ing, and the set of (a priori probabilistic) rules
underpinning them may well be called biologi-
cal computation.

Consider the example of biological compu-
tation that underlies the formation of concepts
of curvature (the bending of tree branch or a
snake in contrast to straight trunk of an aspen
twig) and torsion (forming a three-dimensional
curvilinear shape as a spring spirals in contrast
to bending all within a flat surface, as in snake’s
trail on sand). In Reference 1, it is shown that
an intelligent system with limited memory and
the capacity to infer similarities among encoded
environmental stimuli from solid objects (such
as visual or tactile), is capable of learning to
infer quantitative measurements that would al-
low it to distinguish and compare curvature and
torsion in elongated objects. This is, from the
point of view of perceptual geometry, a geo-
metric result with an underlying process that
might well be called biological computation
that manipulates the biological pieces of infor-
mation within the animal’s brain. What is bio-
logical computation and how can we under-
stand and model it by conventional digital ma-
chines? This question has close connections to
investigation of biological information and bio-
logical communication, and I refer the reader
to my forthcoming article on the subject.2

I wish to comment on the modern roles of

geometry and communication in image sci-
ence. First, images are geometric objects.
Unlike other genre in mathematics, the for-
mation of knowledge and theories in geom-
etry are traced back to the human perception
of the physical world and the regularities
within the stimuli arriving from the environ-
ment.3-5 Helmholtz, Poincaré, and Einstein—
from the classics—and J.J. Gibson, Horace
Barlow, and Jan Koenderink, among the con-
temporaries, have developed theories and
commented on their variations of what geom-
etry means to them.1,2,6-8 My message here is
that quantum jump progress in image science
depends on the depth and breadth of its inte-
gration with geometry. Secondly, image sci-
ence targets two distinct yet overlapping do-
mains. The first domain is direct use of im-
ages by humans, from the era of cave art to
high-definition TV. Human perception is its
main intermediary. Human intelligence is the
main instrument of inference. The second do-
main is image science for machines and non-
human autonomous agents, whether intelligent
and adaptive, biologically-inspired, or organic
mediated. In the second domain, the human
perception has nowhere near the role that it
plays in the first domain, though its interface
with machine should be still an organic factor
in the process.

In EI, both domains are important. Elec-
tronic media are intended, for the most part, to
be used by humans, thus must be streamlined
for communication with biological entities.
Humans and their behavioral outputs are not
disjoint from the myriad biological substrates
underpinning them. On the other hand, I have
argued from the point of view of evolutionary
biology (inspired by Reference 9) that human
behavior must be traced back to biological com-
munication, and it could be better understood
with a firmly scientifically founded theory of
biological computation.2 The practical matters
in R&D of EI translate the latter into necessity
of erecting a mathematical foundation for bio-
logical communication.

My final comment is on the emergence of
new understanding of biological communica-
tion. Behavior is the Gestalt of communication
from (statistical) integration of communication
of subsystems at scales smaller than the one at
hand.2 The time-scales for completing message
passing in sub-behavioral levels (that is, strictly,
smaller-scale complex subsystems) are typi-
cally smaller than the scale for average behav-
ioral time intervals. This formulation of behav-
ior leads to a number of useful observations.

For example, to optimize communication
through behavior of individuals requires both
dynamics, energy, and learning (reinforcement,
reward,…) Further, communication amongst
individuals takes place at multi-level, in a multi-
modal fashion. Third, communication of bio-
logical information requires encoding and de-
coding, and could begin by attempts at imita-
tion in the initial phase. Fourth, all biological
processes underlying living mechanisms are
implicitly or explicitly involved in communi-
cation at various levels, and a certain method
of averaging and Gestalt outputs communica-
tion from a smaller scale to an immediately
greater scale. Finally, communication through
behavior is inherently quantifiable, although we
might not have the means to achieve that at this
point in time.

Prof. Amir Assadi
Department of Mathematics
811 Van Vleck Hall, 480 Lincoln Drive
Madison, WI 53706-1388 , USA
Phone: 608/262-3219
Fax: 608/263-8891
E-mail: ahassadi@facstaff.wisc.edu
http://www.math.wisc.edu/~assadi/
http://www.lmcg.wisc.edu/bioCVG/
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Reconstruction of high-resolution images
from low-resolution images
Due to hardware cost, size, and fabrication-
complexity limitations, imaging systems like
charge coupled device (CCD) detector arrays
often provide only multiple, low-resolution,
degraded images. However, a high-resolution
image is indispensable for applications such as
health diagnosis and monitoring, military sur-
veillance, and terrain-mapping by remote sens-
ing. In addition, there is the intriguing possi-
bility of substituting expensive, high-resolution
instruments—like scanning electron micro-
scopes—with their cruder, cheaper counter-
parts, and then applying restoration methods
to increase the resolution to that obtainable with
much-more-costly equipment. Resolution im-
provement by applying tools from digital im-
age processing is, therefore, a topic of very
great interest.

In this article we consider the reconstruc-
tion of high-resolution images from multiple
undersampled, shifted, degraded and noisy im-
age frames. The image-acquisition scheme is
important in the modeling of the degradation
process. Multiple, undersampled images of a
scene are often obtained by using multiple iden-
tical image sensors that are shifted relative to
each other by subpixel displacements. The re-
sulting high-resolution image reconstruction
problem using a set of low-resolution images
captured by the CCD image sensors is inter-
esting because it is closely related to the de-
sign of high-definition television (HDTV) and
very high-definition (VHD) image sensors.
CCD image sensor arrays, where each sensor
consists of a rectangular subarray of sensing
elements, produce discrete images whose sam-
pling rate and resolution are determined by the
physical size of the sensing elements. Since the
multiple CCD image sensor arrays are shifted
relative to each other by subpixel displace-
ments, the reconstruction of high-resolution
images can be modeled by H f = g + n where f
is the desired high-resolution image, H is the
blur matrix, g is the output high-resolution im-
age formed from low-resolution frames, and n
is the additive Gaussian noise. A schematic for
low-resolution image formation is shown in
Figure 1 (left). Here the blur matrix is con-
structed from the averaging of the pixel values
(see Figure 1 (right)).

Since the matrix H described above is ill-
conditioned, solution for f is constructed by ap-
plying a regularization technique that involves
a regularization functional (which captures the
regularity in f), and a tuning (regularization)
parameter that controls the degree of regular-

ity of the solution. Without the regularization,
the high-resolution image cannot be recon-
structed well. In addition, perfect sub-pixel dis-
placements are practically impossible to real-
ize. Correspondingly, blur operators in multi-
sensor high-resolution image reconstruction are
space-variant, and we need to solve a large non-
Toeplitz linear system for finding the high-reso-
lution image. We have developed a precondi-
tioned conjugate gradient method with cosine-
transform-based pre-conditioners that can solve
the required linear system very efficiently.
Moreover, we have extended this algorithm to
movies by using frames within a movie as our
low-resolution images. In Figure 2 (left), an ex-
ample of a low-resolution frame captured from
a movie is given. The reconstructed high-reso-
lution image from four low-resolution movie

frames is given in Figure 2 (right).
Another approach for the reconstruction of

the high-resolution image is from the wavelet
point of view, where we analyze the reconstruc-
tion process through multi-resolution analysis.
The low-resolution images can be thought of
as the low-frequency samples of f obtained by
passing it through some low-pass filters. Thus
the problem can be posed as reconstructing an
image from given, multiple, low-frequency
samples of f. To recover f, we deconvolve it-
eratively its high-frequency components hid-
den in the low-frequency samples. Our itera-
tive process decomposes the image obtained
in the previous iteration into different frequency
components in the wavelet transform domain,
and then adds them to the new iteration to im-

Figure 1. Low-resolution image formation (left) and blur matrix (right).

Figure 2. Low-resolution image (left) and high-resolution image (right).

Continued on page 10.
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Hyperspectral image coding for
remote-sensing applications
Hyperspectral images have been successfully
used for image classification and segmentation
in remote sensing: in applications of supervised
environment monitoring or geographic infor-
mation systems, for instance. Nevertheless, one
facet of the awkwardness of using hyperspectral
images is their huge size. A typical image (cov-
ering a small region of a few kilometers, for
example) has millions of pixels, with each pixel
represented by several bands. Further, high
resolution may be used for each pixel band (e.g.
24bpp).

Since not all the information contained in
an image is actually needed to properly clas-
sify it with a high accuracy, recent studies have
looked at how much hyperspectral images may
be compressed without affecting the classifi-
cation percentage.1 This is the issue we will
consider here.

Image coding
Figure 1 shows a simplified block diagram of
the components of the encoder in a typical,
lossy, compression system: first, a transform
is applied in order to obtain a set of coefficients
that are un-correlated and that include some
with higher energy compactness. Second, a
quantization stage removes information con-
sidered unnecessary. Third, an entropy coding
scheme is applied to further compress the data.
The overall goal is to produce a recovered im-
age I’  as close as possible to the original image
I while preserving the bit rate for I*  as low as
possible.

This short survey provides an experimental
comparison of five image compression algo-
rithms applied to hyperspectral images. The
first is JPEG standard, used for a number of
years and no longer state-of-the-art. The other
four methods rely on a wavelet transform as
the first step of the coding system. Subband
image coding is an efficient method of image
compression because subbands of the same
level have little interband correlation; however,
some spatially-varying interband energy depen-
dence is often visible across the levels of the
wavelet pyramid. The first two of these four
methods are motivated by such statistically sig-
nificant dependence and yield an embedded en-
coder. In the other two methods the subbands
are encoded separately, not yielding an embed-
ded encoding.

The first embedded method, EZW,2 directly
employs a model of the statistical dependen-
cies between levels in the wavelet transform,
and then encodes the binary symbols with an
arithmetic coder. The second embedded
method, SPIHT,3 avoids the expensive arith-

Figure 1. Components of a typical image coding system.

Continued on page 8.

Figure 2. Top: Rate-distortion curve for grayscale
CASI image using the different compression
methods. Bottom (from top left to bottom right):
original (uncompressed); and EZW; SPIHT; LVQ;
JPEG2K; and JPEG all compressed at 190:1.

Figure 3. Top: Rate-distortion curve for AVIRIS
Indian Pines Ground Truth image using the
different compression methods. Bottom: (from top
left to bottom right): original (uncompressed); and
EZW; SPIHT; LVQ; JPEG2K; and JPEG all
compressed at 25:1.

metic coder by introducing block symbols
along the tree of levels. The first non-embed-
ded method, LVQ,4 groups the wavelet-trans-
formed coefficients of the same subband into
vectors, which are then quantized by means of
lattices: the indices of the resulting lattice points
are then arithmetically encoded. The JasPer
implementation of JPEG2K performs a scalar-
quantization on the wavelet coefficients and
then arithmetically encodes them.

Experimental results and conclusions
Variants of the EZW, SPIHT and LVQ meth-
ods have been implemented. The results
produced by JPEG and JPEG2K are also pro-
vided. See Figures 2 and 3 for, respectively, a
grayscale CASI (compact airborne spectro-
graphic imager) image and an AVIRIS (air-
borne visible infrared imaging spectrometer)
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Trends in lossless image compression
by adaptive prediction
Image compression is gaining ever-increasing
attention because of the huge amount of data
to be archived and/or transmitted. Compression
methods can be either reversible, i.e., lossless1,2

or irreversible (lossy), depending on whether
distortion is introduced or not. In the medical
field and in remote sensing applications, the
original quality must often be thoroughly pre-
served. Hence, considerable research efforts
have been spent in the development of lossless
image-compression techniques.

The first standard was the lossless version
of JPEG. A new standard has been recently re-
leased, named JPEG-LS, based on an adaptive
non-linear prediction and exploiting context
modeling followed by Golomb-Rice entropy
coding. A similar context-based algorithm
named CALIC has also been recently pro-
posed1. Part I of the JPEG2000 image-coding
standard foresees a lossless mode, based on
reversible integer wavelets, capable of provid-
ing a scalable bit stream that can be decoded
up to the lossless level. Besides integer trans-
forms3, differential pulse code modulation
(DPCM) algorithms are suitable for lossless
compression.

Advanced compression algorithms
Advanced DPCM methods have two major
components: adaptive prediction and adaptive
entropy coding.2 Current research can be di-
vided into two categories: the first aims at
achieving better compression performance than
JPEG-LS and CALIC, while keeping compu-
tational complexity reasonably low. The sec-
ond aims at determining the ultimate compres-
sion that can be achieved regardless of compu-
tational complexity.4-6 This issue is relevant to
investigate the best trade-off between compu-
tation and performance, in view of the ever-
increasing processing capabilities of commer-
cial hardware systems.

Given a causal neighborhood (set of pixels
that have previously been scanned) the simplest
predictor takes a linear combination of the pixel
values lying within it, with coefficients opti-
mized to yield minimum MSE (MMSE) over
the whole image. Such a prediction, however,
is optimum only for stationary signals. Hence,
a space-varying prediction rule must be envis-
aged. Although broadly labeled as adaptive pre-
diction, two approaches are feasible: a strictly
adaptive DPCM (ADPCM), in which the coef-
ficients of an MMSE predictor are continuously
recalculated from the incoming data, and a clas-
sified DPCM, in which a training phase is
aimed at recognizing some statistical classes
of pixels and at calculating an optimized pre-

dictor for each class. Such predictors are
adaptively combined (as, in the limit case, the
output is switched to just one of them), to at-
tain the best prediction. This will be referred
to as adaptive combination/switching of adap-
tive predictors (ACAP/ASAP). The latter yields
a crisp adaptive DPCM,6 whereas the former
can be regarded as a fuzzy adaptive DPCM.5

Another notable feature of all the advanced
methods1,3-6 is statistical context modelling for
entropy coding. Prediction errors are arranged
into a predefined number of homogeneous
classes based on their spatial context. If such
classes are statistically discriminated between,
then the entropy of a context-conditioned model
of residues will be lower than that of a station-
ary memoryless model of the decorrelated
source. The context function used5,6 is defined
and measured on residues lying within a causal
neighborhood—possibly larger than the predic-
tion support—as the weighted RMS value of
prediction errors (RMSPE).7

DPCM by relaxation-labelled prediction
The first method6 is based on a classified lin-
ear-regression prediction followed by context-
based arithmetic coding of the outcome residu-
als. Images are partitioned into blocks, typi-
cally 8×8, and an MMSE linear predictor is
calculated for each block. Given a preset num-
ber of classes, a clustering algorithm produces
an initial guess of a user-specified number of
classified predictors to be fed to an iterative
labelling procedure that classifies pixel blocks
simultaneously refining the associated predic-
tors. All predictors are transmitted along with
the label of each block. Prediction errors are

context-arithmetic encoded. Figure 1 shows the
flow-chart of the encoder.

DPCM by fuzzy matching-pursuit
prediction
Matching pursuit (MP) is an iterative method
that expands a signal by using an over-com-
plete dictionary of non-orthogonal functions.
Although MP has been employed mostly for
video coding, its original formulation is quite
general. We assume that the MMSE adaptive
predictor at the current pixel is expressed as a
series expansion of a dictionary made of a num-
ber of predictors fitting the different classes of
features occurring within the image.

The ACAP paradigm underlies the devel-
opment of the fuzzy matching pursuit (FMP)
prediction.5 Initialization is identical to that of
RLP. In the iterative refinement procedure, pix-
els are given degrees of membership measur-
ing the fitness of prediction for each predictor,
then predictors are recalculated from pixels de-
pending on their degrees of membership. The
fuzzy prediction is given by the sum of the
outputs of each predictor weighted by the mem-
berships of the current pixel to it. Thanks to
the linearity of prediction, this approach is
equivalent to approximating the optimum
space-varying linear predictor at each pixel by
projecting it onto a set of non-orthogonal pro-
totype predictors capable of embodying the sta-
tistical properties of the image data. Figure 2
shows the flow-chart of the encoder.

Experimental results and comparisons
Several lossless algorithms have been com-

Continued on page 9.

Figure 1. Flowchart of Relaxation-Labelled Prediction (RLP) DPCM encoder.

Figure 2. Flowchart of the Fuzzy-logic Matching Pursuits (FMP) DPCM encoder.
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Visual pattern coding of human-visual-system-based
wavelets for image compression
The proliferation of digital media has mo-
tivated innovative methods for compress-
ing digital images. The popular Joint Pho-
tographic Experts Group (JPEG) and
Graphical Interchange Format (GIF) stan-
dards have been the prevailing methodolo-
gies in image compression in the past de-
cade.1 On the other hand, recent research
in digital image compression has explored
and improved the utility of the wavelet
transform. Its success as a compression
technique has prompted its inclusion in the
JPEG2000 standard. In addition to the tra-
ditional wavelet transform, alternative
wavelet-based compression schemes have
shown great promise. In many applications
requiring image compression, a human ob-
server is the final receiver of the image in-
formation. Human visual system (HVS)
properties must be taken into consideration
to achieve quality reconstruction of images.
Since more error can be tolerated at fre-
quencies where the observer has lower sen-
sitivity to noise, knowledge of the fre-
quency response of a human observer
can be used in the coding of band-
pass signals.

A wavelet-based video compres-
sion technique, which incorporates
properties of human vision in the de-
sign of the compression system, may
result in the high-quality reconstruc-
tion of images. In this article, we
briefly describe a wavelet-based im-
age compression technique that incor-
porates some of the human visual sys-
tem (HVS) characteristics for the
wavelet decomposition and bit allocation of
sub-band images. The proposed method is es-
sentially a perceptually-efficient form of a two-
level vector quantization (VQ) that preserves
the underlying edge geometries in the high fre-
quency signals at very low coding rates.2 Un-
like the traditional VQ, the proposed method
does not depend on a training set.

The purpose of sub-band decomposition in
image coding is twofold: the first aim is to com-
pact energy, the second is to make the divi-
sions into sub-bands in a way such that all data
represented in the same sub-band is, visually,
equally important. The latter allows for a
weighting of the quantization errors according
to the sensitivity of the HVS, and supports pro-
gressive transmission. It is well known that
humans perceive horizontal and vertical fre-

cursively performed until the desired num-
ber of sub-band decompositions has been
achieved.3

To maximize perceived image quality
at low bit rates, a large fraction of the avail-
able bits must be allocated to the lowest fre-
quency sub-band where most of the image
energy is concentrated. In part, the spatial
sharpness is located in the higher-frequency
bands. Although the energy is low for the
high-frequency bands, they contain many
perceptually-relevant image details and
must be coded very effectively, preserving
the basic features at a low rate. Due to the
highly-structured and sparse nature of the
signal in the non-dominant sub-bands, a per-
ceptually-efficient form of quantization
must be used to preserve the underlying
edge geometries in the high-frequency sig-
nals at very low coding rates.

We propose a pattern-based coding
method, where a small set of local geomet-
ric patterns is used to code an image. The

design of the block patterns is inspired
by edge-related features of the high-fre-
quency sub-bands. The HVS-adapted
sub-bands are then coded separately.
The image is first divided into 4×4
blocks and each is then replaced by one
of the finite number of visual patterns
that best matches its features (Figure 2).
Critical to the success of our approach
is the frequent use of a spatial pattern: a
uniform pattern of constant intensity to
reproduce image blocks of near-constant
intensity. The use of a uniform pattern
adds some distortion to the recon-

structed image, but this distortion will be
among the wavelet coefficients with the small-
est absolute values. After the inverse wavelet
transform, these smallest coefficients corre-
spond to scaled wavelets with low contrast: and
have the least visual impact on the image. The
number of patterns used for a particular sub-
band image effects the quality of the reconstruc-
tion in that sub-band. A larger number of pat-
terns will generally produce a higher quality
reproduction. A larger look-up table will also
requires more bits to be transmitted.

Since all the filtering in HVS-based wave-
let decomposition is performed along the di-
agonals, the quantization artifacts are therefore
found to be oriented along the diagonals where
the HVS is least sensitive. As a result, the quan-

Figure 1. Diamond shape of HVS sensitivity.

Figure 2. A set of visual patterns used in coding.

quencies better than oblique ones. This is prob-
ably due to the dominance of horizontal and
vertical structures in the environment. The par-
titioning into approximately octave bandwidths
of the channels of the HVS motivates a hierar-
chical, dyadic, sub-sampling scheme. If we ap-
proximate the iso-sensitivity curves in the 2D-
frequency-sensitivity function of the HVS with
diamond shapes, it becomes natural to do a dia-
mond-shaped band splitting (Figure1).
Quincunx sampling in the spatial domain is
compatible with diamond-shaped frequency ar-
eas. This first partitioning requires a two-di-
mensional filtering, which is the most computa-
tionally costly part of the scheme. All subse-
quent steps can be performed using 1-D filter-
ing. This decomposition preserves the diamond
shape of the lowest sub-band, and can be re-

Continued on page 10.
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Continued from cover

each frame occurs over a different portion of
the sine wave motion.

The small LED image is close to being an
impulse function. Therefore, the obtained vi-
brated images are close to being the vibration
LSF. This provides an opportunity to compare
the LSF calculated from the sensor signals with
that derived from the images. Both sensor and
image data were downloaded into a PC and the
restoration was performed using MATLAB. In
Figure 2, examples of original vibrated LED
images, LSFs derived from the sensor signal
and image, and restored LED images are pre-
sented. The original images are very blurred
by the vibrations, with blur size of 35 pixels.
This is of course much greater than the image
size of the LED (two pixels).

From the LSF curves in Figure 2, it can be
seen that differential sensing with two acceler-
ometers gives very accurate results for consid-
erably different LSF shapes. The mean squared
error of the measurement for these examples is
in the range of 0.16–0.47%. Such accuracy can
rarely be obtained from image data, except for

Differential sensing of vibration for high-quality restoration of motion-blurred images

images with well-defined sharp object
boundaries. The reported accuracy of LSF
detection for the blind restoration algo-
rithms is in the range of 1.5–27% for single-
frame-based techniques, and 2–10% for
frame-sequence-based techniques. As a re-
sult, as can be seen in the examples, the
restoration of the vibration-blurred images
based on the differentially-measured mo-
tion function is very accurate and is essen-
tially total.

Boris Likhterov and Norman S.
Kopeika
Ben-Gurion University of the Negev
Electrical Engineering Department
POB 653, Beer-Sheva 84105, Israel
E-mail: lichtrov@ee.bgu.ac.il
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Figure 1. Experimental setup for differential vibration sensing.

Figure 2. Four examples of LED image restoration
with different LSFs. Left side: original vibration-
blurred images. Graphs: LSF measured with
differential sensing scheme (solid line) and calculated
from the image (circles). Right side: restored images.
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Indian Pines Ground Truth image.
In both figures, the rate-distortion
curve is shown at the top and the
original in the top left. Then, con-
tinuing from top left to bottom
right, are images compressed at
190:1 (Figure 1) and 25:1 (Fig-
ure 2) using EZW, SPIHT, LVQ,
JPEG2K and JPEG.

Although the four wavelet-
based methods present important
structural differences, experimen-
tal results carried out on several
corpuses of images show that all
the techniques produce approxi-
mately the same performance
from very-low bit rate (320:1) to low bit rate
(8:1). In fact, the rate-distortion curves for EZW
and for SPIHT overlap most of the time. This
seems to indicate that statistical modeling of
the dependencies within transformed images is
the key to state-of-the-art still-image coding.

For some images, when the bit rate gets
close to 1bpp, LVQ loses some of its perfor-

Hyperspectral image coding for remote-sensing applications
Continued from page 4.

Table1. A summary of the reviewed encoding methods.

mance, although it is still above JPEG perfor-
mance. For images of medium or large size,
JPEG2K also provides comparable perfor-
mance for all bit rates; for smaller sizes, and
for very-low bit rates, its performance degrades.

From a computational complexity perspec-
tive, EZW, LVQ and JPEG2K need an arith-
metic coding step. SPIHT avoids this expen-

Security-printing authentication using digital watermarking
Continued from page 12.

Table 1. Sample results of Stirmark tests for the watermarked passport
photograph.

sive step, and is therefore more suitable for a
real-time implementation.

Joan Serra-Sagrista
Computer Science Department, ETSE
Universitat Autonoma Barcelona
E-08193 Barcelona (SPAIN)
E-mail: Joan.Serra@uab.es
http://ccd-hyper.uab.es
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Figure 3. Sample Stirmark
attacks on original image.

Attacks Image PSNR(dB) Authentication Result
under attacks (YES  or  NO)

Cropping 75% NA YES
17 row 5 columns removed NA YES

3x3 Media Filtering 27.36 YES
Frequency Mode Laplacian removal 33.37 YES

Gaussian filtering 3x3 31.93 YES
JPEG Compression of factor 10 30.99 YES
General linear transformation NA YES

Scaling 0.5 NA YES
Scaling 2.0 NA YES

Change aspect ratio NA YES
Rotation with cropping 0.25° or >1° NA YES

Rotation with cropping 0.5°-1° NA NO
Sharpening 3x3 23.45 YES

Shearing 1% NA YES
Shearing 5% NA NO

Color reduction NA YES
Stirmark with randomisation and bending 21.75 NO

authentication processes. For per-
formance evaluation, we have ap-
plied the common Stirmark attack
tests to our digital watermarking
system. These consist of approxi-
mately 90 different types of im-
age manipulation or attack. Table
1 illustrates some sample authen-
tication results obtained against
the various Stirmark image at-
tacks. Moreover, we have also in-
cluded our own DAD attacks that
are relevant to security printing ap-
plications and proved that the tech-
nique was able to survive the “un-
known” types of print-scan at-
tacks.

The proposed authentication
system can solve the problem of
photograph-substitution frauds,
such that if the attacker tries to
change the photograph, the verifier
would be unable to extract the correct personal
ID from the fake bearer’s photograph. As this
water-marking system mainly involves a simple
software implementation, it can be easily inte-
grated with any PC systems, with an input scan-
ner the only hardware needed.

Anthony T. S. Ho, Jun Shen, Hong Pew
Tan,* and Jerry Woon*
Division of Information Engineering

School of Electrical and
Electronic Engineering
Nanyang Technological University
Singapore 639798
E-mail: etsho@ntu.edu.sg
* DataMark Technologies Pte Ltd
100 Jurong East Street 21
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htpp://www.datamark-tech.com
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Method Transform Quantization Entropy Coding

JPEG 2-d DCT Scalar Huffman

EZW Wavelet --- Arithmetic

SPIHT Wavelet --- ---

LVQ Wavelet Vector Arithmetic

JPEG2K Wavelet Scalar Arithmetic
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pared with the RLP and FMP encoders. Three
are advanced algorithms established in the lit-
erature.1,3,4 The last two entries are the new stan-
dard JPEG-LS and the lossless version of JPEG
2000 (L-J2K). All the methods are causal
DPCMs, except S&P and L-J2, which use in-
teger wavelets. A test set comprising widely-
known grayscale images was used. Table 1 re-
ports bit rates on disk—including overhead in-
formation—in bits per pixel.

FMP outperforms all the other methods on
average: only TMW is comparable. The com-
putational cost of the latter, however, is pro-
hibitive, due to the massive training necessary.
Results of FMP are impressive both on a ho-
mogeneous image, like the X-ray, and on a het-
erogeneous one, like Baboon. Especially on
Barb, which comes from interlaced video, FMP
exhibits outstanding performance with respect
to all the other schemes. The parameters of
FMP have been optimized for performance on
Lennagrey. Although slightly poorer than FMP

Trends in lossless image compression by adaptive prediction
Continued from page 5.

Table 1. Bit rates (in bit/pel) needed to encode the test images by several reversible compression
methods: with the exception of JPEG-LS employing Golomb-Rice entropy coding, all methods use
arithmetic coding. Best result for each image emphasized in boldface. TMW results, where
unavailable, have been replaced with the best available ones (those of FMP, except for X-ray) to
compute the average on the last row.

on the whole, RLP achieves the best result on
the X-ray image.

Conclusions
This article describes two advanced approaches
to lossless image compression based on adap-
tive prediction. Their superior performance de-
pends on their ability to capture the most rel-
evant features of the data, which are then ex-
ploited to make predictions that are locally
adaptive: either through the switching of a num-
ber of fitting prototype predictors (ASAP pro-
tocol) or by blending of the output of such pre-
dictors based on fuzzy-logic rules (ACAP pro-
tocol). In both cases, context modelling of pre-
diction residues enhances entropy coding. Ex-
periments have shown that the proposed adap-
tive DPCM schemes encompass the most ad-
vanced methods available, both in the litera-
ture, and among standards. Although RLP per-
forms slightly less well than FMP, its feature
of real-time decoding is highly valuable in ap-

plication contexts, since an image is usually
encoded only once, but decoded many times.
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Reconstruction of high-
resolution images from
low-resolution images

prove the approximation.
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Continued from page 3.

tization artifacts are less noticeable than the
standard wavelet quantization effects, which
are also aligned horizontally and vertically. In
terms of subjective quality, HVS is superior to
JPEG2000 for all images. JPEG2000 has a ten-
dency to smooth the image, thereby losing tex-
ture and depth information. Our HVS compres-
sion scheme retains these details, thus deliver-
ing subjectively-better image reconstruction. In
terms of PSNR, the HVS-based system usu-
ally outperforms JPEG2000 by 1 to 3 dB.
JPEG2000 only exceeds the HVS-based sys-
tem at the highest bit rate on images with large
areas of uniformity. For these images,
JPEG2000 has the benefit of arithmetic cod-
ing. HVS compression would presumably sur-
pass JPEG2000 in all cases with the addition
of an entropy coder.
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Visual pattern coding of
human-visual-system–
based wavelets
Continued from page 6.

For More Information Contact
SPIE • PO Box 10, Bellingham, WA 98227-0010

Tel: +1 360 676 3290 • Fax: +1 360 647 1445
E-mail: spie@spie.org • Web: www.spie.org



11SPIE’s International Technical Group Newsletter

ELECTRONIC IMAGING 13.1 JANUARY 2003

Join the SPIE/IS&T Technical Group
...and receive this newsletter

JEI 2003 subscription rates (4 issues): U.S. Non-U.S.
Individual SPIE or IS&T member* $ 55 $ 55
Individual nonmember and institutions $255 $275

Your subscription begins with the first issue of the year. Subscriptions are entered on a calendar-year basis.
Orders received after 1 September 2003 will begin January 2004 unless a 2003 subscription is specified.

*One journal included with SPIE/IS&T membership. Price is for additional journals.

Send this form (or photocopy) to:
SPIE • P.O. Box 10
Bellingham, WA 98227-0010 USA
Tel: +1 360 676 3290
Fax: +1 360 647 1445
E-mail: membership@spie.org

Please send me:
■■ Information about full SPIE membership
■■ Information about full IS&T membership
■■ Information about other SPIE technical groups
■■ FREE technical publications catalog

Technical Group Membership fee is $30/year, or $15/year for full SPIE and IS&T Members.

Amount enclosed for Technical Group membership $ _________

❏ I also want to subscribe to IS&T/SPIE’s Journal of Electronic Imaging  (JEI) $ _________

Total $ _________
❏ Check enclosed. Payment in U.S. dollars (by draft on a U.S. bank, or international money order) is
required. Do not send currency. Transfers from banks must include a copy of the transfer order.

❏ Charge to my: ❏ VISA ❏ MasterCard ❏ American Express ❏ Diners Club ❏ Discover

Account # _______________________________________ Expiration date ______________

Signature ____________________________________________________________________

This newsletter is produced twice yearly and is available only
as a benefit of membership of the SPIE/IS&T Electronic Imaging Technical Group.

IS&T—The Society for Imaging Science and Technology has joined with SPIE to form a technical group structure
that provides a worldwide communication network and is advantageous to both memberships.

Join the Electronic Imaging Technical Group for US$30. Technical Group members receive these benefits:
• Electronic Imaging Newsletter
• SPIE’s monthly publication, oemagazine
• annual list of Electronic Imaging Technical Group members
• discounts on registration fees for IS&T and SPIE meetings, and on books and other selected publications related to

electronic imaging.
People who are already members of IS&T or SPIE are invited to join the Electronic Imaging Technical Group for the

reduced member fee of US$15.

Please Print ■■ Prof. ■ ■ Dr. ■ ■ Mr. ■ ■ Miss ■ ■ Mrs. ■ ■ Ms.

First (Given) Name ______________________________________ Middle Initial __________________

Last (Family) Name ___________________________________________________________________

Position ____________________________________________________________________________

Business Affiliation ___________________________________________________________________

Dept./Bldg./Mail Stop/etc. ______________________________________________________________

Street Address or P.O. Box _____________________________________________________________

City _______________________________ State or Province ________________________________

Zip or Postal Code ___________________ Country ________________________________________

Phone ____________________________________ Fax ____________________________________

E-mail _____________________________________________________________________________

(required for credit card orders)

(see prices below)

Electronic Imaging
The Electronic Imaging newsletter is published by
SPIE—The International Society for Optical Engi-
neering, and IS&T—The Society for Imaging Sci-
ence and Technology. The newsletter is the official
publication of the International Technical Group on
Electronic Imaging.

Technical Group Chair Arthur Weeks
Technical Group Cochair Gabriel Marcu
Technical Editor Sunny Bains
Managing Editor/Graphics Linda DeLano

Articles in this newsletter do not necessarily
constitute endorsement or the opinions of the edi-
tors, SPIE, or IS&T. Advertising and copy are
subject to acceptance by the editors.

SPIE is an international technical society dedi-
cated to advancing engineering, scientific, and com-
mercial applications of optical, photonic, imaging,
electronic, and optoelectronic technologies.

IS&T is an international nonprofit society whose
goal is to keep members aware of the latest scientific
and technological developments in the fields of
imaging through conferences, journals and other
publications.

SPIE—The International Society for Optical
Engineering, P.O. Box 10, Bellingham, WA 98227-
0010 USA. Tel: +1 360 676 3290. Fax: +1 360 647
1445. E-mail: spie@spie.org.

IS&T—The Society for Imaging Science and
Technology, 7003 Kilworth Lane, Springfield, VA
22151 USA. Tel: +1 703 642 9090. Fax: +1 703 642
9094.

© 2003 SPIE. All rights reserved.

EIONLINE
Electronic Imaging Web

Discussion Forum
You are invited to participate in SPIE’s
online discussion forum on Electronic
Imaging. To post a message, log in to
create a user account. For options see
“subscribe to this forum.”

You’ll find our forums well designed
and easy to use, with many helpful
features such as automated email
notifications, easy-to-follow ‘threads,’
and searchability. There is a full FAQ for
more details on how to use the forums.

Main link to the new Electronic
Imaging forum:

http://spie.org/app/forums/

tech/

Related questions or suggestions can
be sent to forums@spie.org.

Reference Code: 3537



SPIE’s International Technical Group Newsletter12

ELECTRONIC IMAGING 13.1 JANUARY 2003

P.O. Box 10 • Bellingham, WA 98227-0010 USA

Change Service Requested

DATED MATERIAL

Non-Profit Org.
U.S. Postage Paid

Society of
Photo-Optical

Instrumentation
Engineers

Security-printing authentication
using digital watermarking
Security-printing products are com-
monly found in many important day-
to-day applications ranging from iden-
tity cards and driving licenses to cer-
tificates and passports. Many security
documents are subject to fraudulent re-
production, adulteration and theft. At-
tempted frauds include total book coun-
terfeiting, photograph substitution, page
substitution, and expiry-date tampering.
For example, photograph substitution
accounts for about two-thirds of pass-
port fraud.1 A great deal of effort and
research has been channelled into pre-
venting such fraud.2 Most of this relies
on the physical construction of the pho-
tograph. For instance: for some driving
licenses, the security printing process
involves placing a security laminate
over the bearer’s digitized photograph.
However, such features can still be eas-
ily attacked and illegally reproduced.

A simple yet secure approach to
prevent photograph-substitution fraud
is to provide a digital linkage between
the bearer’s photograph and his/her
personal information. Our technique
aims to establish this linkage using a
novel, hybrid digital watermarking
system. The process involves embed-
ding the personal information (for ex-
ample, owner’s ID) as an invisible wa-
termark into the owner’s photograph.
During the authentication process, the
embedded information is extracted
from the digitized photograph and
compared with the personal ID printed
on the security document. If a match
between these IDs can be found, the
document is confirmed as a true copy, other-
wise it is counterfeit.

A personal ID can contain several charac-
ters that are formatted into a random bit stream.
This bit stream is inserted into various fre-
quency coefficients in several sub-blocks of an
orthogonal transform such as a Discrete Co-
sine Transform (DCT) or Hadamard Transform

Figure 1. Watermark embedding (top) and authentication (bottom)
process for security document application.

Figure 2. Digital-analogue-digital conversion process or print-scan process.

Continued on page 8.

(HT) of the original photograph.3,4 The water-
marked photograph can then be printed onto
the security document. In the authentication
process, the security document is first scanned
into a computer. The watermarking system then
extracts the hidden watermark information
from the digitized photograph. The digital wa-
termark embedding and authentication process

are shown in Figure 1.
The entire operation involves a

print-scan or digital–analogue-digital
(DAD) conversion process that differs
significantly from the traditional digi-
tal watermarking applications of copy-
right protection and authentication
(which mainly focus in the digital do-
main). With this technique, a printed
hardcopy with an invisible embedded
watermark can be retrieved. This of-
fers many potential business opportu-
nities and applications for security
documents, such as driving licenses,
identity and credit cards. The print-
scan or DAD process is illustrated in
Figure 2.

The main performance criterion
for any digital watermarking tech-
nique is its watermark robustness
against various types of malicious im-
age attacks or manipulations that at-
tempt to destroy it. These attacks may
include rotation, translation, scaling
cropping, resam-pling, filtering, for-
mat conversion and JPEG compres-
sion. Moreover, the data integrity of

the watermarked image should not suffer any
degradation that is apparent to the naked eye.
For commercial exploitation, the watermark-
ing algorithm should provide ease of imple-
mentation and not be computationally inten-
sive during the watermarking embedding and


