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Figure 1. Framework of image processing using a pulsed cellular neural
network. In the PCNN, output “white” pixels represent firing neural nodes,
“black” pixels represent silent nodes.

Advances in synergetics and in the understanding of the mammalian retina and visual cortex have lead to new
approaches to processing visual information. Patterns of traveling waves of neural activation have been found
in both retina and in cortex. Autowaves represent a particular class of these spatio-temporal patterns, which
propagate in an active media (i.e. neural network) at the expense of the energy stored in the medium.1 They
have some typical characteristics that are fundamentally different from those of classical waves in conservative
systems. Autowaves do not reflect from inhomogeneities: there is no interference because two colliding autowaves
annihilate each other. Nonetheless, both autowaves and classical waves share the property of diffraction. These
properties provide invariance for image processing under translation, rotation, and scaling, that make autowaves
useful for image processing. Their exploitation, using models of reaction-diffusion systems implemented using
the cellular neural network architecture, provides an opportunity for us to develop novel and efficient spatio-
temporal image processing techniques.2–5

Our autowave-based image processing approach uses a pulse-coupled neural network (PCNN). The PCNN
is, to a very large extent, based on the Eckhorn model of the cat visual cortex.6 The basic simplified structure of
the PCNN processor for a 2-D input image is shown in Figure 1. An input gray-scale image is represented as an
array of M×N normalized intensity values. Then the array is fed in at the M×N inputs of the PCNN. The
network finally processes the array to produce a series of binary images containing the segmentation result.

The processing is implemented in the following way. First, the dynamic threshold of each neural node signifi-
cantly increases when the neuron fires, producing a binary impulse, then the threshold value decays. When the
threshold falls below the respective neuron’s potential, the neuron fires again, which raises the threshold again.
The process continues creating binary pulses for each neuron. While this process is underway, neurons encourage
their neighbors to fire simultaneously because of the strength of the excitatory connections between them. The
firing neurons begin to communicate with their nearest neighbors that, in turn, communicate with their neighbors.
The result is a traveling activation wave that expands from active regions. Thus, if a group of neurons is close to
firing, then one neuron can trig-
ger the whole group.

As a result of this linking
between neurons, the pulsing
activity of those invoked leads
to synchronization between
groups of neurons correspond-
ing to sub-regions of the image
with similar properties, and pro-
duces temporal series of binary
images. These phenomena of
synchronization and traveling
waves support image processing
such as image noise removal,
segmentation, edge extraction,
skeletonization, and motion de-
tection.

Real images are noisy. Pre-
liminary image smoothing, continued on p. 8
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Change detection in aerial stereo pairs at different dates
Change detection in aerial
imagery is an important
task for many applications
(cartographic, agricul-
tural, military, etc.). A re-
view of existing tech-
niques can be found in
Reference 1. The aim of
this application is to detect
changes in an aerial scene
by comparing stereo pairs
taken at intervals of sev-
eral years in order to up-
date a database. Figure 1
gives some examples of
changes that can be found
in a given area.

The result of the pro-
posed algorithm is a set of
cartographic locations
that have a high likeli-
hood of containing
changes. Each location
will be submitted to a hu-
man operator who will ei-
ther validate the given
change and update the
database, or reject it. We
are mainly interested in
changes occurring for a
specific class of objects:
buildings. To isolate new
constructions, we provide
an algorithm that works in
two steps.

Depth comparison
First, during a focusing
phase, we aim to elimi-
nate a large part of the
scene without losing any
actual changes. This is
achieved through a com-
parison of the Digital El-
evation Model (DEM) between the two different
dates. We used the depth map computation algo-
rithm described in Reference 2. Other depth al-
gorithms and references can be found in Refer-
ence 4. The old depth map is computed with the
old stereo pair, and the new depth map is com-
puted with the new one.

Here, median values of the depth histograms
for small regions (5×5m) at the two different dates
are compared. The DEM comparison leads to fo-
cusing areas. Each focusing area is a set of four
images: a stereo pair of the area at the old date and
a stereo pair at the new date. The technical details
of this step can be found in Reference 3. Some of
these regions of interest (ROI) contain true changes
and some no relevant changes at all. The true
changes have to be separated from the false alarms.

Region of interest classification
In the second phase, regions of interest are classi-

Figure 1. Example of a scene taken at five year intervals. We can see changes in different classes of
objects inside this scene (vegetation, buildings, water areas, etc.).

Figure 2. Example of a decision tree. At each
node of the tree, a graph is associated that

is chosen with a learning set. Each leaf
will have a distribution of our two

classes non-building (NB) and
building (B). An example arriving at

a given leaf will be associated
with the mode of the distribution

associated to this leaf. At a
given internal node, as soon

as the associated graph is
found on the image, we

will go to the right sub-
tree.

fied. Each ROI is de-
scribed by four images:
stereo pairs of the focus-
ing area at the first and
second dates. To decide
whether the ROI contains
a change or not, each of
the four images is classified as “building” or “non-
building”. The building versus non-building clas-
sifier is a combination of several decision trees
induced by a learning stage. Each node of a deci-
sion tree is identified with a graph of features,
which is more likely to describe buildings than
background. Figure 2 gives an example of a deci-
sion tree and the feature graphs associated at each
node.

Finally, the classification results at the two
different dates are compared. An area is selected
as soon as one of the images from the old stereo
pair is classified as background, and at least one

of the images from the new
stereo pair is classified as
building. Again, the tech-
nical details for this clas-
sification step can be found
in Reference 3.

Results
Figure 3 illustrates some re-
sult. Our approach has been
tested on two different
scenes: each contains be-
tween 150 and 200 changes.
The false negative rate is
close to 10% of the overall
number of changes in the
scene. In order to have an

idea of the accuracy of our algorithm, we will have
to make further tests on different scenes. In the near
future we will have to face change detection prob-
lems for different resolutions. We think that our
algorithm is well designed for resolutions between
40cm and 1m.

Limitations and future work
Many false-negative examples are due to artifacts
and errors made by our DEM. We will have to
improve our DEM algorithm for the change de-
tection task: a good DEM must furnish reliable
depth information even if this information is
sparse.

We will also have to use a vegetation detector
in order to reduce the number of false positives.

Vegetation areas are challenging for both the depth
map algorithm and the classification algorithm.
Inside vegetation areas, we will have a lot of ran-
dom depth variations, and a lot of edges in almost
every direction: hard to deal with using our graph-
matching algorithm.

Some complementary experiments will be
achieved, with several different human operators,
in order to compare a fully-manual database up-
dating approach with ours. With these experi-
ments, we will be able to see what input a human

Figure 3. Example of a change detection. The image on the left shows an
area at a given date t2 and the image on the right shows the same area at a
date t2 with t2 > t1 with the result of our algorithm superimposed.
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Image restoration: beyond wavelets
Have you ever been confronted with the compli-
cated situation of trying to get something out of
noisy data? Experts would say that wavelet tech-
niques are the ideal tool for such a task, and it is
true that wavelets and related multiscale repre-
sentations pervade all areas of signal processing.
The recent inclusion of wavelet algorithms in
JPEG 2000—the new still-picture compression
standard—testifies to the lasting and significant
impact of wavelets. The reason for their success
is the fact that the wavelets basis represents a large
class of signals well, and therefore allows us to
detect roughly isotropic elements occurring at all
spatial scales and locations.

As noise in the physical sciences is often not
Gaussian, the modelling of many kinds of noise
in wavelet space (Poisson noise, a combination
of Gaussian and Poisson noise, non-stationary
noise, etc. ...) has been a key step for the use of
wavelets in scientific, medical, or industrial ap-
plications.1 Extensive wavelet packages exist now,
both commercial2 and non commercial,3 that al-
low any researcher, doctor, or engineer to ana-
lyze his or her data using wavelets.

Figure 1 shows the result after applying the
wavelet-filtering method to a real spectrum. Fig-
ure 1, bottom left, shows the difference between
the original and filtered spectrum (residual). As
we can see, the residual contains only noise. Note
how the important spectral lines are accurately
preserved.

After such results, is the noise removal prob-
lem definitively solved? Not exactly: for a 2D or
3D data set, the wavelet basis presents some limi-
tations because it is not adapted to the detection
of highly anisotropic elements, such lines in a im-
age, or sheets in cube. Recently, other multiscale
systems like curvelets4 and ridgelets,5 which are
very different from wavelet-like systems, have
been developed. Curvelets and ridgelets take the
form of basis elements that exhibit very high di-
rectional sensitivity and are highly anisotropic. A
digital implementation of both the ridgelet and
the curvelet transform for image noise removal
has been described in Reference 6.

To understand the main difference between
wavelets and ridgelets, consider an image that
contains a vertical band embedded in relatively-
large-amplitude white noise. Figure 2 shows such
an image. Note that it is not possible to distin-
guish the band by eye. The wavelet transform
(undecimated wavelet transform) is also incapable
of detecting the presence of this object, while the
ridgelet transform detects it clearly (above the 5s
detection level). Another example is presented in
Figure 2, which shows a part of the Saturn rings.
The wavelet filtering is clearly not as good as the
curvelet filtering, which better respects the aniso-
tropic features contained in the data.

Although the results obtained by simply
thresholding the curvelet expansion are encour-
aging, there is, of course, ample room for improve-
ment. Indeed, each transform has its own area of
expertise and this complementarity may be of

Figure 1. Top: real spectrum and filtered spectrum. Bottom: both noisy and filtered spectra overplotted, and
difference between the spectrum and the filtered data. As we can see, the residual contains only noise.

Figure 2. Top, respectively from left to right: original image containing a vertical band embedded in white
noise, reconstructed image using the undecimated wavelet transform, and reconstructed image using the
ridgelet transform. Bottom, respectively from left to right: noisy data (Saturn rings), reconstructed image for
the wavelet coefficients, and reconstructed image from the curvelet coefficients.

great potential. In Starck et al.,7 a combined fil-
tering method has been proposed which allows
us to build a solution, ensuring that it incorpo-
rates information judged as significant by any of
our representations. The idea is to force the solu-

tion to be smoothed, but under the constraint that
any significant coefficient (i.e. Fourier, wavelet,
..., ridgelet or curvelet coefficient larger than a
given detection level) detected by a given trans-
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Text detection in binarized images of advertisements
Documents with complex and arbitrary structures
are becoming more and more widespread thanks
to rapid advances in publishing technology. Ad-
vertisements published in magazines or on the
Web, which are rich in color and texture and con-
tain other special effects to attract readers, are
examples of this. Many modern office systems
using commercial character recognition systems
can recognize color text only with strict con-
straints imposed on the quality of the document
image. This limits the areas where such systems
can be applied to simple documents, like techni-
cal journals, the structure of which are well-de-
fined and constrained.

The main reason for the failure of character
recognition seems to be an inability to correctly
identify text regions in an image. Our team is try-
ing to tackle this text detection task. Research
started from a search for simple features relying
on edge information extracted from grayscale ad-
vertisement images.1 Grayscale images were used
instead of color because it was known that most
of the edge information is contained in the lumi-
nance component of a color image. This attempt
led to promising results, but the false positive rate
was also significant. It became obvious that deeper
analysis—involving binary, grayscale, and color
information—was needed for accurate and reli-
able text detection. Since binary images are sim-
pler to analyze, research on text detection started
with these images.

Each original color image taken from a data-
base was binarized with several global thresholds.
An example of one of the binary images obtained
is shown in Figure 1(a), where both black text on
a white background, and white text on a black
background are present. In addition, the font sizes
significantly vary within the image and vertically-
oriented text is included. (We worked on the ex-
pectation that text could be aligned either hori-
zontally or vertically, which is most commonly
the case.)

To cope with the conditions mentioned, we
proposed a new method for text detection. Al-
though it relies on a set of heuristically-chosen
parameters, it has a number of advantages over
existing methods. Firstly, the number of tunable
parameters is moderately small, and each of them
is typically limited by a narrow interval of val-
ues. Secondly, definitions of well-known proper-
ties of text characters are revised to allow extra
flexibility when dealing with characters of vari-
ous font styles and sizes.

The method begins with nonlinear order-sta-
tistic filtering, which eliminates small isolated

configurations of black and white pixels. Con-
nected component analysis, assuming that text is
black, determines the parameters of the bounding
boxes of the components. Knowing the first and
last rows of each bounding box helps to identify
components composing initial line candidates.
Since these may span two text columns, line par-
titioning is done based on regular distances be-
tween characters belonging to the same text line.
At the same time, candidates that are too short
are dismissed from further analysis. Usually these
come from pictures, so this operation reduces the
false-positive rate. However, lines that are too
short may also include characters. Hence, com-
ponents resembling characters are searched for
both within and outside (in the immediate vicin-
ity) of each line candidate. This search is based
on the fact that, given a fixed font style and size,
characters—independently of a script or a lan-
guage—are composed of strokes of approximately
constant width. As a result, a set of horizontal lines
containing black text is generated.

The same operations as just described are ap-
plied to the remaining components in order to
detect vertical lines of black text. The only ex-
ception is that height-related features are replaced
with width-related ones. White text on a black
background is then located by repeating all steps
required to detect black text.

Text detection results are given in Figure 1(b),
where black and white detected text is copied as
it is from the image in Figure 1(a), while non-text

is presented in gray. Both black and white text
was successfully extracted independently on font
size and text orientation. Relatively small portions
of pictures were identified as text, too, but it was
expected that non-text that looks like text would
be indistinguishable from the real thing.

Though the results obtained are very promis-
ing, binary data alone cannot reliably detect text
in all cases. For example, characters can go unde-
tected if they touch pictures. Future research will
therefore concentrate on utilizing grayscale and
color features to alleviate such problems.

Oleg Okun and Matti Pietikäinen
Machine Vision and Intelligent Systems

Group
Infotech Oulu and

Department of Electrical Engineering
University of Oulu
P.O.Box 4500
FIN-90014, Finland
Email: {oleg, mkp}@ee.oulu.fi
URL: http://www.ee.oulu.fi/research/imag/

document/
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Figure 1. Text detection from binary images: (a) binary image; (b) text detection results.
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Noise suppression using nonlinear filters
with spatially connected neighborhoods
Many nonlinear filters incorporating
rank-order operations have been intro-
duced in computer and optical research
in recent years. There are several dif-
ferent classes of such filters: median fil-
ters, multistage- and multilevel-median
filters, stack filters, order-statistics fil-
ters, morphological filters, and rank-
order filters. These have all proven to
be very effective for the removal of ad-
ditive and impulsive noise, and for en-
hancing and restoring images. More-
over, they exhibit excellent robustness
properties and can provide solutions in
many cases where linear filters are in-
appropriate. The primary reason for
their success in image processing is that
they can suppress noise without destroy-
ing important image details such as
edges and fine lines.

In the design of rank-order filters,
image elements of a moving window are
sorted in ascending order called the
variational row. The output of a rank-
order filter is a function over the ele-
ments in the variational row around the
central element of the window. Since
rank-order filters take into account lo-
cal image content (local statistics), the
rank-order filtering is locally adaptive.
A drawback of conventional rank-order
filters is that they only weakly exploit
spatial relations between image ele-
ments, because they perform the re-or-
dering of elements of a 2D moving win-
dow into a 1D sequence (variational
row).

We suggest a new class of rank-or-
der filters that explicitly use spatial re-
lations between image elements.1 To
produce the output, the filters use spa-
tial and rank information from spatially
connected areas of the input image
within a moving window. We use the
notion of neighborhood to define vari-
ous useful structures in the image. The
three types of neighborhood are defined
as follows. The CEV-neighborhood is
the subset of pixels from the moving
window that are spatially connected
with the central pixel, and whose values deviate
from the value of the central pixel at most by pre-
determined quantities. The CKNV-neighborhood
is a subset of a specified number K pixels from
the moving window that are spatially connected
with the central pixel, and whose values are near-
est to the value of the central pixel. Finally, the
CER-neighborhood is the subset of pixels from
the moving window that are spatially connected
with the central pixel, and whose ranks deviate
from that of the central pixel at most by predeter-

Figure 1. (a) Test image. (b) Noisy image (impulsive noise).
a b

a b

mined quantities.
The choice of neighborhood is defined by the

available a priori information on the processed
image. If a priori information about the geometri-
cal size K of the details to be preserved is known,
then the CKNV-neighborhood can be used. The
parameter K is chosen to be of the order of the de-
tail area to be preserved after further processing.
The choice of the CEV-neighborhood helps us to
take into account a priori information about either
the spread of the signal to be preserved, or the noise

Figure 2. (a) Median filter. (b) Enhanced difference between original image and
image processed with a median filter. (c) Our proposed filter. (d) The enhanced
difference between the original image and that processed using our filter.

fluctuation to be suppressed. Finally,
the CER-neighborhood is often used
in edge-extraction algorithms and for
suppression of noise with a distribu-
tion having heavy tails.

The output of the filtering is a
value computed as a basic operation
(sample mean, median value, mini-
mum and maximum values) over the
neighborhoods. The spatially con-
nected neighborhoods are not formed
across region boundaries, so noise
suppression will not blur image edges
as often happens with other tech-
niques. Signal processing of an im-
age that has been degraded due to im-
pulsive noise is of interest in a vari-
ety of tasks. Computer experiments
are carried out to illustrate the per-
formance of a median filter of size
3×3 elements and the proposed algo-
rithm. The proposed algorithm results
either in the median value over the
CEV-neighborhood, if the size of the
neighborhood greater than a predeter-
mined threshold, or in the median
value over elements surrounding the
central element. The size of the mov-
ing window is 5×5 elements. Figures
1(a) and (b) show a test interferogram
image containing fine lines and the
same image corrupted with impulsive
noise. The probability of an impulse
occurring is 0.2, and if it occurs it can
be positive or negative with equal
probability. Figures 2 (a) and (c) show
the processed images with the median
filter and the proposed algorithm, re-
spectively. Figures 2 (b)(d) show the
enhanced difference of the original
image with the median filtered image,
and with the filtered image with us-
ing the algorithm described here, re-
spectively. It can clearly be seen that
our algorithm significantly outper-
forms the conventional filter.

Vitaly Kober, Mikhail Mozerov,
and Josué Alvarez-Borrego
CICESE, Departamento de Óptica
División de Física Aplicada
Km 107 Carretera Tijuana-
Ensenada
Ensenada 22860, B.C., México
E-mail: vkober@cicese.mx
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Block-based MRF image modeling
Markov random
field (MRF) models
have been widely
used for image seg-
mentation and resto-
ration problems. The
beauty of MRF mod-
eling is its ability to
describe a large num-
ber of spatial interac-
tion phenomena by
means of local char-
acteristics. Such
models are typically
used as priors to rep-
resent the continuity
and the smoothness
of the pixel-based
spatial information.
Conventional pixel-
based MRF model-
ing, however, has a
limited ability to de-
scribe large-scale be-
havior. The model
can be improved by
adopting a larger neighborhood system, but this
immediately increases the number of parameters
to be estimated, which, in turn, increases the com-
putational complexity significantly.

To overcome this limitation, multi-resolution
(or hierarchical) extensions of the MRF model
have been considered. By decomposing the im-
age data into different frequency components and
scales, the MRF models can be used to describe
the interactions between consecutive transition
levels as well as adjacent sites at each resolution.

However, recalling that the merit of the MRF
model is its ability to describe the global behav-
ior of the image by repeated local updates, the
role of the MRF model can be limited in a the
multiresolution structure. That is, the coarse-to-
fine (i.e., global-to-local) treatment of the image
in the multiresolution environment may weaken
the effect of the MRF modeling. In fact, it has
been shown that the aforementioned limitation of
the MRF models is not caused by the nature of
MRF, but by inappropriate choice of local fea-
tures and statistics.1 For example, it has been ex-
perimentally shown that macro textures and shape
patterns can arise from simple local features such
as Gabor filters and Gestalt grouping rules for edge
fragments. This implies that it is still possible to
describe the large-scale behavior of the image by
the conventional setting with a single resolution
structure.

A plausible way to use the local features and
statistics is to adopt block-based MRF modeling.
Specifically, by dividing the image space into

small, non-overlapping
image blocks, and as-
signing random vari-
ables to each one, we
can express local fea-
tures, such as edges and
texture, that are more
helpful for the large-
scale description. For
example, we can assign
two random variables to
each image block. One
of them is responsible
for the continuity of the
block label and the other
represents the coloring
of the image block given
the underlying block la-
bel. Then, the set of all
random variables of the
image blocks constitutes the random field X for
the hidden block label configuration, and the ran-
dom field Y for the observable image block fea-
tures. As shown in Figure 1, the random field X is
assumed to be an MRF, i.e., the conditional prob-
ability of a random variable X

s
 at a block site s

depends only on the block labels of its neighbor
blocks. Given a realization y of Y, we can find an
optimal MAP (maximum a posteriori) realization
x*  of X that maximizes P(X|Y) for all possible
realizations of X. The global maximization of
P(X|Y) can be achieved through local updates of
the associated MRF model.

In the application of block-
based MRF image modeling to the
image segmentation problem, the
realization of the random variable
for the block label is assumed to
take one of six values.2 The real-
ization characterizes the image
block into one of the following six
classes: monotonic intensity block,
texture (or non-directional edge)
block, horizontal block, vertical
block, and two diagonal blocks.
Adopting the MAP criterion, the
optimal block label configuration
x* yields the classification of the
image blocks among one of the six
block configurations. Note that the
monotonic intensity blocks and the
texture (or non-directional edge)
blocks belong to interior homoge-
neous regions. So, they are clus-
tered and are given region labels.
Then, all remaining unlabelled
blocks, including edge blocks, are

assigned to the adjacent
homogeneous regions.
During this process, we
can divide each
unlabelled image block
into four small blocks to
increase the segmenta-
tion accuracy in the re-
gion boundary. We can
repeatedly divide the
unlabelled image
blocks until we have a
pixel level segmenta-
tion. As shown in Fig-
ure 2, the segmentation
result yields large seg-
ments, which indicates
that the block-based
model can extract the
large-scale behavior of
the image.

Chee Sun Won
Dept. of Electronics Engineering
Dongguk University
Seoul, 100-715, Korea
E-mail: cswon@dongguk.edu
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Figure 1. Image block site and its neighborhood.

Figure 2. Example of segmented image.
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New distortion measures for
compression of remote-sensing data
Remote sensing applications for command
and control, intelligence gathering, tele-
medical monitoring and other applications
can require huge amounts of signal and im-
age data to be sent over the information in-
frastructure. In many of these applications,
the image data transmitted is not intended
for viewing but rather is used to make au-
tomated decisions and inferences after be-
ing fused with other data at a site far from
where they were recorded, and to accom-
plish this in a timely manner requires ef-
fective data compression schemes. In such
applications, however, standard multime-
dia compression techniques are generally
not highly effective. A key difference be-
tween compression for these applications
and for multimedia is that the data is not
generally consumed directly by humans,
but rather is used to make decisions about,
and estimations of, physical parameters re-
flected in the data. We are currently devel-
oping compression techniques for remote
sensing applications that are specially de-
signed for the purpose of optimizing the
performance of subsequent estimation pro-
cessing, and have shown that they outper-
form methods designed using more stan-
dard approaches to data compression. In
such applications, it is crucial that the com-
pression methods minimize the impact on
the estimation performance, rather than
stressing minimization of mean-square er-
ror (MSE) as is common in many compres-
sion techniques.

Important work has been done towards
establishing some theoretical bounds, as
well as some general theoretical underpin-
nings of estimation and decision using com-
pressed data (e.g. Zhang and Berger). How-
ever, just as the important gains in com-
pression for multimedia are being made by
carefully exploiting the interaction of spe-
cific signal characteristics with specific
consumption characteristics (e.g., psychol-
ogy of vision, etc.), rather than just apply-
ing general theoretical results, major gains
in compression for remote sensing can
come from understanding how to exploit
the interaction of specific signal character-
istics and the parameters to be measured.

Some of the key issues that we are con-
sidering follow. First is the development of new
distortion measures that provide an understand-
ing of how to design algorithms for remote sens-
ing applications: such methods should be general
enough to allow easy generalization and exten-
sion to a broad array of applications, yet provide
a means for exploiting application-specific char-
acteristics. Second, we consider how to make
trade-offs in the case where a user is interested in

estimating multiple parameters but their require-
ments for compression are in conflict. Third, we
are trying to understand how to compress re-
motely- collected data when it may have multiple
uses that have conflicting compression require-
ments. Finally, we want to characterize the inter-
action between the compression technique and the
communication network. Here we report on our
efforts concerning the first of these issues.

The applications listed above, while by
no means the only applications, are consid-
ered to be representative and important cases.
Each one can be used as a vehicle to explore
the issues we have described and to develop
and test general methodologies. The problem
that we are currently using as a development
sandbox is the estimation of the shift between
two 1D signals, and the extension to the cor-
responding 2D image problem, is also under-
way (the estimation of the translation between
two different views of the same scene, per-
haps for the purpose of alignment needed for
subsequent automatic combination or com-
parison of the two images). The 1D problem
of shift estimation is called time-difference-
of-arrival (TDOA) estimation and arises in
the remote-sensing problem of estimating the
location of a source from signals received at
multiple platforms.

Compression for shift estimation
To ensure maximum performance, it is nec-
essary to employ a compression method that
is designed specifically for this application.
However, much of the effort in developing
general lossy compression methods has fo-
cused on minimizing the mean-square error
(MSE) due to compression: furthermore, even
compression schemes developed for TDOA
applications have limited their focus to mini-
mizing the MSE. But when the goal is to es-
timate TDOA, the minimum MSE criterion
is likely to fall short because it fails to ex-
ploit how the signal’s structure impacts the
parameter estimates,. In particular, for remote-
sensing estimation problems, the Cramer-Rao
bound (CRB) provides guidance as to what
signal characteristics are important.

Achieving significant compression gains
for the emitter-location problem requires ex-
ploitation of how signal characteristics im-
pact the TDOA accuracy. For example, it is
known that the TDOA accuracy is inversely
proportional to the RMS bandwidth of the
signal’s spectrum, called this because of its
similarity to measuring the root-mean-square
value of a probability density function. Thus,
compression techniques that can significantly
reduce the amount of data while negligibly
impacting the signal’s bandwidth have great
potential. For instance, we recently obtained

results that show that it is possible to exploit this
idea through simple filtering and decimation to meet
requirements on data transfer time that can’t be met
through quantization-only approaches designed to
minimize MSE. Further, it has been shown that,
for cases when minimum MSE approaches can
meet the data-transfer time requirement, simple
techniques that exploit the bandwidth characteris-

Figure 1. Rate-TDOA accuracy results for using decimation-only,
quantization-only, and combined quantization and decimation. The
top plot shows the TDOA accuracy versus the rate, and the bottom
plot shows the number of bits used per sample at each rate for
each case. It is clear that the combined approach is better for rates
below 48kbps: at rates above 48kbps, the rate is high enough that
the full signal bandwidth should be used according to the optimiza-
tion rule we have derived. Therefore, the combined approach is
most useful at low rates.

Figure 2. Compression results for using our sub-optimal non-MSE
wavelet transform method compared to a pure MSE-based wavelet
transform method for two different signals. Solid curves are for the no-
compression case, the dashed curves are for the MSE-based case,
and the dotted curves are for the sub-optimal RMS-measure based
case. The top two plots show the compression ratio versus pre-
compression signal SNR. The bottom two plots show TDOA accuracy
versus pre-compression signal SNR. Note that the sub-optimal RMS-
based method outperforms the MSE-based method.

continues on p. 9
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based on similarities of adjacent pixels, can sup-
port better segmentation. Some of the results from
the application to segmentation of images of cross-
sections for polymeric foam are shown in Figure 2
(a-c). As can be seen from the images in Figure 2(b
and c), the combination of PCNN smoothing and
PCNN segmentation produces segmentation that
is less noisy. The process known as “fire-front” or
“grass fire” propagation transform, which exploits
the annihilation property of autowaves, is used for
skeletonization. The object’s skeleton is the locus
of intersections of wavefronts propagated inwards
with a constant speed from the border of the object
(see Figure 3). The existence and interactions of
autowaves also provide computational mechanisms
to detect and characterize motion. Autowaves re-
sulting from moving objects leave traces in the
PCNN two-dimensional sheet of neural nodes.
Traces left by wavefronts may be used for motion
characterization (see Figure 4).

Further research on the combination of statis-
tics extracted from wave propagation with statisti-
cal and classification techniques can facilitate de-
velopment of algorithms for classification of im-
ages, recognition of objects in images, and motion
characterization. In addition, wave-based process-
ing is inherently parallel and can be exploited by

Autowaves for image processing
continued from front cover

advances in hardware,
i.e. field programmable
gate array technology
(FPGA). FPGA imple-
mentation of image pro-
cessing operations has
the potential to achieve
a speed-up of over two
orders of magnitude
compared to software
implementations. This
will be an area of future
research for us, as well
as focussing on wave-
based motion detection
and characterization.

Alexei N. Skourikhine
Safeguards Systems Group, MS T005,
Los Alamos National Laboratory,
Los Alamos, NM 87545, USA
E-mail: alexei@lanl.gov
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Figure 2. Image noise removal. (a) Original image. (b) Segmentation without noise removal. (c) Segmenta-
tion after noise removal.

Figure 3. Thinning.

Figure 4. Traces left by traveling
wavefronts from two objects moving in
opposite directions at different
velocities.

Change detection in
aerial stereo pairs at
different dates
continued from p. 2

operator will need in order to make an efficient
update (focusing on regions with a single change,
focusing on areas with many changes, etc.).

In order to improve the updating process for
high accuracy databases, we will have to improve
our classification step: matching small graphs will
not be sufficient in order to take a decision. We
will have to compare internal structures of the
buildings. This comparison will be accomplished
by inter-date 3D feature comparison (segments,
planar patches, etc.).
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form will be reproduced by applying the same
transform to the solution. Using this approach, the
residual is much better, and features cannot be
detected by eye any longer. This is not the case
for either the wavelet or the curvelet filtering. The
combined filtering leads to a real improvement
both in terms of signal-to-noise ratio and visual
appearance. Furthermore, it arguably challenges
the eye in being able to distinguish structure/fea-
tures from residual images from real image data
(at least for the range of noise levels that was con-
sidered here). Single transforms cannot manage
this.7

The complementarity of the different trans-
forms can also be used in order to separate the
different components contained in an image. In
Reference 8 we proposed the Combined Trans-
form Method, which allows us to represent on
different bases simultaneously.

Figure 3 illustrates the result in the case where
the input image contains only lines and Gaussians.
Two transform operators were used, the wavelet
transform and the ridgelet transform. The first is
well adapted to the detection of Gaussian due to
the isotropy of the wavelet function,1 while the
second is optimal to represent lines.5 Figure 4
shows the original image, and reconstructed im-
age from the wavelet coefficients, and the recon-
structed image from the ridgelet coefficients. The
addition of both reconstructed images reproduced
the original.9

Image restoration: beyond wavelets
continued from p. 3

Figure 3. Left: original image containing lines and Gaussians. Middle: reconstructed image for the wavelet
coefficient. Right: reconstructed image from the ridgelet coefficients.
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tics of the signal can lead to TDOA accuracies that
are up to three times better than is possible with
minimum MSE approaches.

Filtering/decimation is used to compress the
signal by reducing the sampling rate used at the
expense of reducing the signal’s bandwidth and
hence degrading the TDOA accuracy: quantiza-
tion is used to compress by reducing the number
of bits per sample at the expense of decreasing
the signal-to-noise ratio (SNR) and hence degrad-
ing the TDOA accuracy. Our method determines
how to optimally balance the application of fil-
tering/decimation and quantization to achieve
optimize TDOA accuracy for a given data rate.
Curves of TDOA accuracy versus rate are given
in Figure 1.

We have also developed approaches more ad-
vanced than simple filtering and decimation. The
general goal is the following, expressed here as
transform coding with a non-MSE distortion. Given
some signal decomposition of the signal to be com-
pressed, we wish to select which coefficients should

New distortion measures for compression of remote-sensing data
continued from p. 7

4. E. J. Candès and D. L. Donoho, Curvelets—a sur-
prisingly effective nonadaptive representation for
objects with edges, Curve and Surface Fitting:
Saint-Malo 1999, A. Cohen, C. Rabut, and L.
Schumaker, eds., Vanderbilt University Press, Nash-
ville, TN, 1999.

5. E. Candès and D. L. Donoho, Ridgelets: the key to
high dimensional intermittency?, Phil. Trans R. Soc.
Lond. A 357, pp. 2495-2509, 1999.

6. J. L. Starck, E. Candès, and D. L. Donoho, The
curvelet transform for image denoising, IEEE Trans.
on Image Processing, 2001, to appear.

7. J. L. Starck, D. L.Donoho, and E. Candès, Very high
quality image restoration, Proc. SPIE 4478, 2001.

8. J. L. Starck, Detection of anisotropic features by the
curvelet transform, Proc. SPIE 4477, 2001.

9. http://www-stat.stanford.edu/~jstarck

be coded and transmitted to achieve a desired rate-
distortion goal where distortion is a non-MSE mea-
sure that captures the structure inherent in the CRB.
In general, this selection process is quite difficult
because of the nonlinear, nonmonotonic relation-
ship between the coefficients and the RMS band-
width, and the fact that removing a coefficient af-
fects both the RMS bandwidth and the SNR. We
are currently investigating the use of genetic algo-
rithms to accomplish this optimal choice when us-
ing a wavelet transform as the signal decomposi-
tion. For now, though, a sub-optimal method has
been developed that more heavily weights the band-
width-important high frequencies. Results are given
in Figure 2.
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bank of nonlinear filters. Images of a true target
captured from different distances constitute the
set of filters in the bank. Apart from locating a
true sign, this method allows us to approximately
determine the distance between it and the acqui-
sition system.1

In order to detect slightly-tilted road signs, cer-
tain tolerance to in-plane rotations has to be con-
sidered. In-plane rotation invariance is achieved
by rotating the input scene. Recognition results
obtained by this method are compared to results
obtained for composite nonlinear filters.2 Com-
posite filters are constructed by using digital, ro-
tated versions of the reference target. In-plane
rotation of the input scene allows better detection
results than composite filters. Moreover, in the
design of composite filters, the maximum num-
ber of images included in a composite filter is lim-
ited. The range of the input scene rotation, on the
other hand, can be determined based on the appli-
cation. Using composite nonlinear filters rather
than using individual filters in the filter bank can
satisfy tolerance requirements for out-of-plane ro-
tation of the targets.2 By using the same proce-
dure, tolerance to some information included in a
given road sign (for instance, the number of a
speed-limit sign) is also achieved.2 In both cases,
Fourier-plane nonlinear filters4,5 are used as com-
posite filters. Finally, as a consequence of using a
nonlinear processor, the recognition system has
certain tolerance to illumination fluctuations.1,3

The entire recognition system has been tested
with real still images, as well as with video se-
quences provided by Connecticut Department of
Transportation. Scenes were captured in real en-
vironments, with cluttered backgrounds, and con-
tained many distortions simultaneously. Figure
1(a) corresponds to an analyzed scene that in-
cludes two stop signs to be detected. These signs
are located on both sides of the road, have differ-
ent illumination and are partially in-plane and out-
of-plane rotated. Moreover, the stop sign on the
right has a non-uniform illumination, due to shad-
ows caused by the leaves, and has been vandal-
ized. The background of the picture is quite clut-
tered and there are areas with larger energy than
the energy of stop signs.

Two high intensity correlation peaks appear in
the output plane, see Figure 1(b), and they coin-
cide with the position of the two true targets in the

scene. The image included in Figure 2(a) corre-
sponds to an example of recognition of a speed-
limit sign, along with the rejection of objects with
similar energy. A high and sharp peak allows loca-
tion of the target, whereas no false alarms appear:
see Figure 2(b). Other distorted speed limits with
different speed-limit numbers have also been de-
tected by using the same processor and filter bank.2

Finally, we demonstrated the rejection of a false
sign. The analyzed image shown in Figure 3(a)
contains a false target that is perfectly discriminated
from the speed-limit target, even though it has a
high similarity in shape with respect to the object
to be recognized: see Figure 3(b).
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Road sign detection for intelligent
transportation systems
Development of safety systems is in increasing
demand. A safety system based on a pattern rec-
ognition processor could be installed in vehicles
in order to automatically detect and identify road
signs. Afterwards, the recognition system could
make an objective decision according to the in-
formation detected. One of the greatest difficul-
ties on achieving this goal lies in the number of
different distortions that may simultaneously
modify the reference sign. Variations in scale, in-
plane and out-of-plane rotations, background clut-
ter, partially occluded signs, and variable illumi-
nation, are some examples of distortions that can
affect road signs.

Different approaches to obtain distortion-tol-
erant systems have been developed in the field of
pattern recognition. In general, a given recogni-
tion technique is designed to provide satisfactory
results when dealing with a particular distortion
of the object. However, the same strategy usually
gives poorer results if another type of distortion
has affected the object. We have carried out analy-
sis and comparison of different techniques. By
combining various strategies, we obtained a rec-
ognition system that is simultaneously scale-in-
variant and tolerant to slight tilts or out-of-plane
rotations (due to different view angles of the ac-
quisition system). Tolerance to illumination fluc-
tuations is also needed to enable a recognition
system to work under different illumination or
weather conditions. Finally, robustness to a clut-
tered background is important for a road sign rec-
ognition processor that analyzes images captured
in real environments.

Recently, we proposed a road sign recogni-
tion system1,2 based on a nonlinear processor.3 The
processor performs several nonlinear correlations
between different input scenes and a set of refer-
ence targets. Multiple correlation results are then
processed to give a single recognition output. A
learning algorithm is used to establish a thresh-
old value that determines whether or not any ob-
ject contained in an input scene is similar to the
target.

To achieve detection of road signs even when
the acquisition system is in motion, scale-invari-
ance is provided to the processor by means of a

Figure 1. Recognition of stop signs using the described distorted-tolerant system. (a) Input scene. (b) 3D
representation of the output plane.

Figure 2. Recognition of a 30mph speed-limit sign, on a cluttered background, using the described
distorted-tolerant system. (a) Input scene. (b) 3D representation of the output plane.

Figure 3. Recognition results for the described distorted-tolerant system when a false sign (do not enter
sign) is analyzed. a) Input scene. b) 3D representation of the output plane.


