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A psychophysically-based model of
glossy surface appearance
Color and gloss are two fundamental attributes
used to describe surface appearance. Color is re-
lated to a surface’s spectral reflectance proper-
ties. Gloss is a function of its directional reflec-
tance properties. Many models have been devel-
oped for describing color, from simple RGB, to
the more sophisticated Munsell, XYZ, and
CIELAB models that have grown out of the sci-
ence of colorimetry. Colorimetric models make
it easier to describe and control color because
they are grounded in the psychophysics of color
perception. Unfortunately similar psychophysi-
cally-based models of gloss have not been avail-
able.

We have developed a new model of glossy
surface appearance that is based on psychophysi-
cal studies of gloss perception.1,2 In two experi-
ments, we have used multidimensional scaling
to reveal the dimensionality of gloss perception
and to find perceptually meaningful axes in vi-
sual gloss space, and used magnitude estimation
to place metrics on these axes and predict just
noticeable differences in gloss. Stimuli for the
experiments were generated using physically-
based image synthesis techniques. Our test envi-
ronment consisted of a painted sphere enclosed in a checkerboard box illuminated by an overhead area light
source. Images were rendered with a Monte Carlo path-tracer incorporating an isotropic version of the Ward
light reflection model:
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) is the surface’s bi-directional reflectance distribution function (BRDF) that describes

how light is scattered by the surface. In addition to angular dependencies (θ,φ,δ), the Ward model uses three
parameters to describe the BRDF: ρ

d
, the surface’s diffuse reflectance; ρ

s
, the energy of the specular lobe, and

α, the spread of the specular lobe. By setting each parameter to three levels we generated the 27 stimulus
images shown in Figure 1.

In the first experiment, subjects viewed pairs of images and judged how different they appeared in gloss.
We analyzed these gloss difference judgments with multidimensional scaling to recover the visual gloss space

Figure 1. Visual gloss space with its (c) contrast and (d)
distinctness dimensions.
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Circular dynamic stereo system
The automatic inference of
depth information has
been one of primary aims
of computer vision. Ste-
reo-vision and slit-ray-pro-
jection methods are often
used to achieve this, but
there are difficulties in
implementing these sys-
tems. In a stereo vision
system, for example, com-
puter algorithms designed
to find matching features
in pairs of frames can have
problems when several
matches are possible. In
implementing the slit-ray-
projection method, on the
other hand, the target must
be stationary during the
measurement.

In order to cope with
these problems, we have developed
a circular dynamic stereo system1,2

that uses a single TV camera. This
camera moves sideways with re-
spect to measuring points on the
object. As a result, the amount of
displacement undergone by its im-
age on the image plane is directly
proportional to the displacement of
the camera and inversely propor-
tional to the measuring point’s dis-
tance from it. The distance between
camera and measuring point can
therefore be estimated using these
two parameters. This method is well
known, and has been used in mo-
nocular motion stereo systems
(MMSS). However, our circular dy-
namic stereo system realizes this
MMSS in compact setup and en-
ables the measurement of moving
targets. A simplified setup of our
system is shown in Figure 1. By introducing a
refractor on the camera lens, the image of the mea-
suring point undergoes a displacement on the im-
age plane that is related to the distance between
the TV camera and the measuring point. That is,
the displacement r on the image is inversely pro-
portional to the distance D between the measur-
ing point and the camera as,

(1)

where f is the focal length of the camera and d
is the magnitude of shift caused by refractor. When
the refractor is rotated at high speed (3600rpm)
during the TV camera exposure, circular streaks
appear on the image due to the rotational shift.
Since the size of the circular streak is inversely
proportional to the distance of the measuring point
from the camera, each streak contains 3D infor-

Figure 1. Circular dynamic stereo system. Figure 2. Tracer particle with circular shift.

Figure 3. Velocity distribution in a water tank.
Figure 4. Multiple laser spots with circular shift.

Figure 5. Reconstructed water surface.

continued on p. 9

mation about a measuring point, and
this information can be extracted by
processing the streak image.

What follows are a few ex-
amples to the feasibility of circular
dynamic stereo system. The first is
the measurement of 3D velocity dis-
tribution in a water tank. Tracer par-
ticles are introduced into the water
and these particles to move with
water flow. The velocity distribution
of the water can then be obtained
by measuring the movement of
tracer particles. Figure 2 shows an
image of streaks of tracer particles
recorded by the circular dynamic
stereo system: bigger streaks corre-
spond to the particles closer to the
TV camera and smaller streaks those
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Human color constancy: model and performance
Color constancy (CC) is a psychophysi-
cal phenomenon in which a system is
partially able to discount the chromatic-
ity of the illumination. For example, a
page of a book appears white to a hu-
man reader both indoors under a yellow-
ish light, and outdoors under the bluish
daylight. This results from the fact that
the perceived color of an object is not
just a simple function of the spectral
composition of the light reflected from
it, but it also depends on the spatial dis-
tribution of other chromatic stimuli in the
field of view. A camera does not posses
this ability, therefore color corrections of
images are necessary.

Although the issue of CC has been
investigated for more than a century,
there is still no widely accepted model
that explains or imitates the human CC
capability. However, our new CC bio-
logical model1 succeeds in correcting the
color of images in a similar way to the
visual system. It performs automatic
color correction of still images and video
sequences under single and multiple il-
lumination conditions. This algorithm
takes advantage of retinal mechanisms
of adaptation (gain controls).

Most of the CC algorithms that have
been applied to real images so far were
not intended to imitate human visual
physiology and performance, as this al-
gorithm is, but rather for exactly extract-
ing reflectances and illuminations. These
machine vision algorithms are better
suited to applications such as color ob-
ject identification and, in addition, none
were intended for video image applica-
tions (i.e. none include human dynami-
cal adaptation mechanisms).

Model
The model (Figure 1) describes the trans-
formation of visual stimuli to the re-
sponses of three types of color-coded on-
center Retinal Ganglion Cells (RGCs)—
the last chain of data processing in the
retina—and the transformation of these
responses to a perceived image. These
cells have a color-opponent receptive
field (RF) with a center-surround spa-
tial structure. (An RF is that region in
the visual field that elicits a cell re-
sponse.) The RGC’s center and surround
regions adapt separately, each by two
mechanisms of local and remote adapta-
tion. Local adaptation refers to that oc-
curring in the RF’s regions (center or
surround) owing to their own inputs,
whereas remote adaptation refers to the
effect of more peripheral regions. Only
then are the two RF regions subtracted

(through a “difference of Gaussians”).
For moving (video) images, the adap-

tation functions implement a “curve-shift-
ing” operation1 and include a dynamic
time-filter: the time constant of which
depends on the temporal history of the
stimuli. In single (still) images, where the
responses have already reached a steady
state, the model generates a corrected
image by transforming the simulated
RGCs’ responses (at any location in the
retina) into a perceived color. To do this,
it uses a mathematical inverse function.

Performance
To evaluate the performance of the model,
we calculated two indices: a human per-
ception index (HPI) and a machine vision
index (MVI). Both are based on distances
between images: the average distance be-
tween the color coordinates of pairs of
corresponding pixels in Lu*v* space. The
human perception index (HPI) measures
the distance that is formed between two
perceived (corrected) images due to chro-
matic illumination. Thus, the index refers
to the distances between two output im-
ages of the algorithm. One is an image
taken under chromatic illumination, and
the other is the same scene, taken under a
reference achromatic illumination. The
machine-vision index (MVI) compares a
corrected chromatic illumination image to
an achromatic illuminated reference im-
age. Thus, the MVI measures to what ex-
tent the corrected image represents the
spectral reflectance properties of surfaces
in the scene

Calculations yielded positive values
for both indices (indicating improved CC)
for a large repertoire of images taken un-
der different chromatic illuminations, both
single and multiple.

To further quantitatively evaluate the
degree of CC correction achieved by the
algorithm, the u*v* color coordinates of
a reference grey square patch were calcu-
lated for different images of the same
scene taken under different illuminations:
pink, yellow, green and blue (Figure 2,
solid circles). Arrows show the progress
from the original “colored” image,
through a mild correction, to a stronger
correction (open circles). In addition, Fig-
ure 2 includes the coordinates of the ref-
erence patch in a reference image, taken
under achromatic (white) illumination,
and those of this reference patch after the
reference image was subjected to algo-
rithm corrections under the same condi-
tions (open circles). Arrows progression
indicates a shift from the illuminant’s

Figure 2. Color coordinates of an achromatic reference patch under
different illuminations, and their shift as a result of algorithm correc-
tions.

Figure 1. Schematic of color constancy algorithm.

continued on p. 8
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Soft computing methods for
the segmention of human brain images
The field of image-processing based on distrib-
uted and parallel computing is becoming more and
more important for many different applications.
Medical applications, especially in radiology, ben-
efit from many methods of image processing.1,2

But, in contrast to industrial applications where
the same structures have almost the same appear-
ance, most medical structures greatly differ in the
way they look. Beside “classical uncertainties”
like noisy data or smooth transitions between
single structures, often the so-called inter-indi-
vidual variability increases the difficulty of iden-
tifying segmented structures. Each MRT-data set
of a (healthy) human head contains the same struc-
tures but with different features like location, form,
size, brightness, etc..1,2 The variability of these
structures can be handled with different methods.
We use “fuzzy object descriptions to describe size,
roundness, orientation, homogeneity and other
features. We also use more general models such
as: Fuzzy Object Models (FOMs)”.1

An iconic fuzzy set,3,4 introduced by Rosenfeld
as a fuzzy image subset, is: “A figurative repre-
sentation of a fuzzy set where each pixel repre-
sents a numerical measure of uncertainty. Both
methods of using fuzzy descriptions and iconic
fuzzy sets are introduced in order to obtain a simi-
larity-measure for the comparison of stored ana-
tomical model descriptions (linguistic and figu-
rative) with segmented structures and their fea-
tures.”2 The representation using iconic fuzzy sets
instead of linguistic descriptions allows an easier
way to describe some medical structures, and can
be seen as a supplemental method for classifica-
tion. This results from several knowledge acqui-
sition sessions with medical experts. Often, they
describe some structures with a sketch or a com-
parison (“this object looks like a ...”) to comple-
ment their linguistic description. Each proposi-
tion in the following text describes the two-di-
mensional case: an extension to the three-dimen-
sional can be done using mainly simple adapta-
tions.

Segmentation of images means the partition-
ing of interesting objects from background. In the
task of brain segmentation, the interesting object
is the brain and its integral structures such as the
brain stem, corpus callosum or cerebellum. First
of all, the region of interest with a gross brain seg-
mentation can be determined by a neural network.
Beside this ROI-detection, some low-level knowl-
edge about features of the brain and its structures
are used for a fuzzy-region growing method and
the selection of the seed points (starting pixel for

the region growing). This knowledge is used for
fuzzy filters like F

position
 and F

brightness
 shown in the

following equations.2

V2D and H2D describe the vertical and hori-
zontal restriction of the point-positions, τ is a ar-
bitrary t-norm and I represent an image and µ is
the membership function. The pixels in the re-
sulting picture have different grey values, which
represent the measure of confidence to be a use-
ful seed point. Every pixel is selected as a seed
point and the region growing process starts. Then
each added pixel gets a measure of confidence
that is not larger than the measure of the corre-
sponding seed point or the neighboring pixel. It
should be pointed out that the resulting structures
are iconic fuzzy sets with pixels of different con-
fidences to be the correct (searched for) structure.
The next step of classification is not easy, because
each found structure (there are several hundred)
has to be divided into its α-cuts, and then their
classification attempted. So the segmentation pro-
cess delivers few correct divided structures and
works on a very low level of pixel aggregation.
The region-growing methods, however, produces
convex iconic fuzzy sets, so it is guaranteed that
each α-cut is a connected region (connected in
the sense of Rosenfeld).2

After segmentation, a knowledge base contain-
ing fuzzy descriptions of the known brain struc-
tures is used to identify the structures found in
the image. If no secure classification of the struc-
ture is possible, then a neural network—trained
with different outlines of the known structures—
is used to try to make the identification. If no clas-
sification is possible, a fuzzy rule-based system
is used to adopt the parameters used for the seg-
mentation step. Then, the segmentation restarts
with this new parameter values. If there is still no
classification possible, the structure will be clas-
sified as unknown.1,2

A programming language has been developed
for use in soft-computing methods for medical
image processing. This language supports the user
with several hundred commands and the ability
to use fuzzy descriptions, fuzzy data bases and
fuzzy knowledge bases. Also, neural networks,
genetic algorithms and evolutionary strategies are
supported: these could be used to allow parallel

optimization of the various parameters. Distribu-
tion of processing task is done by automatic load
balancing.

 The main tasks that demand high computing
power are the selection and optimization of knowl-
edge-bases or KBs (here the KBs are those of each
individual), and these are distributed to several
processors for parallel computing. (Clearly, the
reason of parallelization is to reduce computation
time.) Our concept, based on evolutionary algo-
rithms (EA) offers the ability to distribute the in-
dividual knowledge bases on different processors
for the calculation of the fitness function (balance).

EAs form a class of probabilistic optimization
technique motivated by the observation of bio-
logical systems. Although these algorithms are
only crude simplifications of real biological pro-
cesses, they have proved to be very robust and
due to their parallel nature and efficient imple-
mentation. The basic idea of evolutionary algo-
rithms involves the use of a finite population of
individuals (KBs). We found out that the choice
of best fitness function (balancing) and the abil-
ity to process many generations to make the re-
sult more efficient, especially important in this
complex field of image analysis.

Madjid Fathi
NASA ACE Center
UNM-EECE Building Rm. 134
Albuquerque, NM 87131, USA
E-mail: fathi@eece.unm.edu

Jens Hiltner
UNI-Dortmund, OH 16, LS1
44221 Dortmund
Germany
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The uniqueness of the color of human skin
In the field of computer science, one of
the major motivations behind under-
standing the appearance of human skin
is the realistic rendering and automatic
location and identification of people from
color images. There is a substantial body
of work in this area that relies on con-
ventional tri-color Red-Green-Blue
(RGB) sensor data1 and on chroma-
model based approaches.2 RGB data is
prevalent, easy to collect and mimics
human color sensitivity. It is therefore a
natural and practical approach to use it
in investigating skin recognition and ren-
dering. The drawback of RGB-based
methodologies is that they cannot cap-
ture the variations that we perceive in hu-
man skin. The color and shading of skin
is affected by, among other things,
changes in lighting, temperature, emo-
tional state, exposure to different envi-
ronmental conditions, and race. To im-
prove the existing techniques for the re-
alistic rendering of people, and for auto-
matic human detection, we must isolate
the effects of each of these factors and
understand how each of them affect the
appearance of skin. RGB data does not
provide sufficient amount of detail to al-
low for this type of analysis.

A better understanding of skin reflec-
tance can be achieved through spectro-
graphic analysis. For this work, we used
the radiometric facility of the General
Robotics Automation and Sensory Per-
ception laboratory of the University of
Pennsylvania. We measured the light re-
flected from the skin using a high-reso-
lution, high-accuracy spectrograph un-
der precisely calibrated illumination con-
ditions. The dense spectral measure-
ments that we obtained allowed us to for-
mulate a biological explanation of skin
color and its variations. They also en-
abled us to discriminate between human
skin and dyes designed to mimic human
skin color.

We measured the skin reflectance of
23 volunteers ranging from 20 to 40 years
old. Out of the 23 volunteers, 18 were
male and five female. We tried to get a
diverse collection of skin tones: 16 of our
subjects were Caucasian, three were
Asian, two of African descent and two
were Indian. Two different samples were
taken for each subject: one for the back
of their hand and one for the palm, with
the light falling approximately on the
center of the hand. The final measure-
ment was the ratio of the light reflected
from the skin over the light that was in-
cident on the skin.

Our measurements showed that, overall,
the percentage of light that was reflected from
human skin increased with wavelength.
Around 575nm there was a specific shape that
looks like the letter W (two dips with a bump
in the middle). Detailed analysis of the col-
lected data revealed that for 90% of the sub-
jects the first local minima of the W occurred
at 546nm on average, the local maximum oc-
curred at 559nm on average and the 2nd lo-
cal maxima occurred at 576nm on average
(see Figure 1). The remaining 10% were sub-
jects with very dark shaded skin belonging to
no distinct race. The hands of these people
(not their palms) reflected a smaller propor-
tion of the incident light (which is how a
darker surface can be described) and did not
exhibit the W pattern of the other plots.

The next question that arose was whether
this pattern is sufficiently unique to provide
for the identification of human skin, especially
when compared to a mannequin that carries
the same key features as humans (lips, nose,
eyes, arms, legs etc.). We took five measure-
ments of the spectrum of light reflected by a
mannequin. The spectrographic measure-
ments clearly show that the color of the man-
nequin is quite distinct from that of real skin,
although it is designed to mimic it (see Fig-
ure 2).

The existence of the W pattern only in the
human skin lead us to believe that it can be
linked to the physics of skin reflectance and
can thus become a valid cue for reliable skin
recognition (capable of discriminating mate-
rials designed to mimic the color of human
skin, and aid in more realistic modeling and
rendering.

A closer look at the various chromophores
in the skin and their absorption spectra pro-
vided the biological explanation we were hop-
ing for. The light absorption in the outer lay-
ers of the skin is typically dominated by the
absorption caused by melanin. The absorp-
tion spectrum of melanin is roughly mono-
tonically decreasing as wavelength increases.
The inner layers of the skin are heavily per-
meated with blood vessels that contain oxy-
genated hemoglobin, HbO

2. The absorption
spectrum of HbO

2
 exhibits the inverse W pat-

tern (i.e. an M pattern) located at almost iden-
tical to the wavelengths (i.e. 542nm, 560nm
and 576nm respectively).3 This indicates that
the oxygenated hemoglobin in the blood ves-
sels is responsible for the skin’s W pattern.
Heavily pigmented skin has increased
amounts of melanin which absorbs most of
the light, allowing a much smaller percent-
age of the incident light to reach the vascula-
ture of the skin. Thus the hemoglobin absorp-
tion bands, although still present, are not de-

Figure 1. Plots of the reflectance spectra of the back of the hand of
various subjects.

Figure 2. Spectra of human hands versus a mannequin.

Figure 3. The reflectance spectrum of human skin compared with
the absorption spectrum of oxygenated hemoglobin. continued on p. 9
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Three-dimensional measurement for
industrial applications
Numerous industrial applica-
tions require the highly-accu-
rate measurement of free-form
objects in various settings. In
the automotive industry, for
example, these measurements
can be intended for design,
body-assembly of engineering
prototypes, reverse engineer-
ing, quality control of parts,
assembly in production, mea-
surement within assembly
lines and final quality assur-
ance. New market require-
ments such as a larger num-
ber of new car models, a
shorter life term of each
model, and shorter time-to-
market require quick ramp-up
times and engineering pro-
cesses, increased production
flexibility, and smaller pro-
duction batches.

For these purposes, vari-
ous techniques and methods
of 3D part measurement have
been introduced and em-
ployed in industrial environ-
ments over the years. Tradi-
tional non-contact optical
methods include using light
structured with Moire pat-
terns, laser trackers and
photogrammetry. These tech-
niques generally achieve
higher throughput than most
non-optical methods: as well
as lower accuracy rates that
are not generally acceptable. Solutions based on
laser trackers—where reflective hemispheres are
operator-scanned around a feature to reflect a la-
ser beam back to a measuring device—achieve
higher accuracy on some surface types, but are
operator dependent. They require many types of
attachment per type of feature, do not produce
dense enough data, and are essentially contact-
based. Structured light techniques require mul-
tiple sequential snapshots, thus limiting them to
applications in which time-varying changes are
minimal. Photogrammetry systems, specifically
those that require the placement of special tar-
gets or markers on the measured parts, can
achieve very high accuracy levels. However, they
can only be used for measuring specific target
points. They are not suitable for dense surface
scanning, and usually require intense manual
intervention by the operators.

Here we discuss a technology that combines
the high-speed data acquisition provided by high-
resolution CCD cameras with indirect photogram-
metry (where targets are placed in fixed locations

in the background) and sophisticated 3D recon-
struction algorithms (an extended version of the
paper with more details can be found in Refer-
ence 1). This is possible because we have the abil-
ity to detect and measure the targets accurately,

acquire images of the object, re-
construct them quickly and ac-
curately, and stitch tiles together
(integrate many smaller fields of
view into one large one). In ad-
dition, the technology is robust
and enables the measurement of
untreated shiny metallic and
plastic parts under different
working environments, includ-
ing factory shop floors. These
features have been combined to-
gether at CogniTens Ltd., a
company that supplies non-con-
tact 3D measurement systems
for the industrial metrology
market.

Reconstruction of
3D shape
The reconstruction process is
based on the structure-from-
motion principle of extracting
3D shape from multiple 2D pro-
jections using a pinhole camera
model (3D-from-2D geometry).
In a nutshell, given two or more
views of a set of 3D features,
the corresponding 2D features
are first brought into correspon-
dence, then the relative loca-
tions of the camera are recov-
ered from these matches, and fi-
nally the location of the 3D fea-
tures are recovered by triangu-
lation. In other words, the inver-
sion process—going from 2D
feature locations across multiple

views to the corresponding 3D feature locations—
requires two basic ingredients. The first of these
is the ability to accurately locate image features
from the local brightness distribution of each im-
age and accurately match those features across
multiple images together, referred to as the corre-
spondence process. The second is the ability to
extract the relative locations of the cameras from
the matching 2D points.

The challenges in this process are two-fold.
First, the correspondence process is constrained
by the geometry because the images are not arbi-
trary but are produced from the same 3D object.
Therefore the correspondence process is best ap-
proached by combining photometric principles—
modeling the change of brightness distribution
across images—and geometric constraints. Sec-
ond, the relative camera locations are governed
by two families of parameters: the internal param-
eters describing the focal length, location of prin-
ciple point, and skew of local coordinate system;

Figure 1. The OptigoTM 100 3D measurement system.

Figure 2. A cloud of points representing the 3D
structure of a scooter, as measured by an
OptigoTM system.

continued on p. 9
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Image analysis for the food industry:
Digital color camera photographs and
nuclear magnetic resonance images
Meat consumers expec-
tations of quality are
constantly growing. This
is forcing the adoption of
increasingly strict qual-
ity control measures and,
as a result, the meat in-
dustry is looking for new
methods of meat quality
evaluation. In addition,
researchers want im-
proved techniques to
deepen their understand-
ing of meat “features”.
Fat content in meat is
one element that influ-
ences some important
meat quality parameters
and has been shown to
influence palatability
characteristics. Though
there are several ways of
analyzing quantitative
fat content and its visual appearance in meat, few
of them are fully adequate. For instance, chemi-
cal analysis is currently used to determine intra-
muscular fat content in beef, but it requires large
amounts of organic solvents.

Recent advances in the area of computer and
video processing have created new ways to moni-
tor quality in the food industry. (An overview of
these methods is shown in Figure 1.) Image pro-
cessing methods have been successfully applied
to meat images in order to determine the percent-
age and the distribution of various substances.
Specifically, we have been working with camera
photographs and magnetic resonance images of
meat. Segmentation algorithms have been opti-
mized for these kinds of images in order to clas-
sify different substances as muscle, fat and con-
nective tissue.

Color images of beef M. longissimus dorsi
were captured by a Sony DCS-D700 camera. The
same exposure and focal distance were used for
all images. The meat pieces were lit with two
lamps, each with two fluorescent tubes (15W).
Polaroid filters were used on the lamps and on
the camera to avoid specular reflections. Images
were 1344×1024 pixel matrices with a resolution
of 0.13×0.13mm. All these images were analyzed
for fat percentage and distribution. In order to
measure fat percentage a segmentation algorithm
has been optimized for these kinds of images.1

The method is based on the substance character-
istics in the three-dimensional color space (RBG)

and on the intrinsic fuzzy nature of these struc-
tures, where pixels could belong to multiple
classes with varying degrees of certainty. The
method is fully automatic and combines a fuzzy
clustering algorithm, the fuzzy c-means algorithm,
and a genetic algorithm (an optimization technique
inspired by natural evolution). The percentage of
various substances within the sample are deter-
mined; the number, size distribution, and spatial
distribution of the extracted fat “spots” (that are
impossible to measure by chemical analysis) are
measured by image analysis with high accuracy.1

Our results show that image analysis is a power-
ful method of quantifing the visual appearance of
fat in meat.

We also investigate the use of a new technol-
ogy to control the quality of food: nuclear mag-
netic resonance (NMR) imaging. The NMR tech-
nique has been developed and greatly improved
for medical imaging and is in common clinical
use. We believe that NMR imaging has a future
application in the field of food science, which—
in combination with image processing tech-
niques—can lead to automatic and quantitative
methods of assessing meat quality. The inherent
advantages of NMR images are many. Chief
among these are unprecedented contrasts between
the various structures present in meat: muscle, fat,
and connective tissue. In particular, connective
tissue and fat, which are almost indistinguishable
in color images taken by a camera, contrast highly
in NMR images, i.e. fat areas are lighter, while

connective tissue is darker
than other structures. In ad-
dition, NMR imaging allows
a 3D analysis of the meat
composition, so the volumet-
ric content of fat—not just
the fat that is superficially
visible—can be readily mea-
sured.

The segmentation algo-
rithms used for Magnetic
Resonance images also in-
clude a filtering technique to
remove intensity inhomoge-
neities caused by non-unifor-
mities in the magnetic fields
during acquisition. A good
correlation (r=0.77, p=0.02)
was obtained between the
mean fat content (measured
by chemical analysis) and by
the present method. This
value was better than the cor-

relation value we obtained between chemical
analysis and image analysis applied to digital pho-
tographs of the same meat samples, probably be-
cause NMR imaging provided the three dimen-
sional structure of the meat samples based on the
chemical information of the proton mobility and
distribution.2 We also developed a method of de-
scribing and quantifing the distribution of fat, and
we have applied it to both camera pictures and
NMR images.3 The NMR technique has proved
to be a powerful tool in measuring fat content non-
destructively, non-invasively and continuously.

Lucia Ballerini
Centre for Image Analysis
Lägerhyddvägen 17
752 37 Uppsala, Sweden
E-mail: lucia@cb.uu.se
http://www.cb.uu.se/~lucia
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Figure 1. Methods to analyze fat content in meat.
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shown in Figure 1. The figure shows that,
under our test conditions, apparent gloss
has two dimensions related to the contrast
of the reflected image (c) and the sharp-
ness or distinctness of the reflected im-
age (d).

In the second experiment, we used
magnitude estimation to place metrics on
these dimensions. Subjects viewed single
images from the stimulus set and rated
how glossy the objects appeared. We ana-
lyzed these ratings with regression tech-
niques to derive metrics for the dimen-
sions that relate changes in apparent gloss
to variations in the physical properties of
the surfaces:

We used these metrics to rewrite the
parameters of the physically-based Ward
light reflection model in perceptual terms.
The result is a new psychophysically-
based light reflection model that relates
the physical dimensions of glossy reflec-
tance and the perceptual dimensions of
glossy appearance. The following sections
demonstrate how the new model can be
used to describe and control the appear-
ance of glossy surfaces.

Gloss matching
Many studies have noted that apparent
gloss is affected by a surface’s diffuse re-
flectance. This effect is illustrated in the
top row of Figure 2 where the white, gray,
and black objects have the same physical
gloss parameters (rs = 0.099, a = 0.04),
but the lighter ones appear less glossy than
the darker ones. This phenomenon makes
it hard to create light and dark surfaces
that have the same apparent gloss. The
bottom row of Figure 2 shows the results
produced with our new model. Here the
objects have been given the same visual
gloss parameters (c = 0.057, d = 0.96), and
they appear similar in gloss despite their
lightness differences. Using the parameters pro-
vided by the new model should make it much
easier to create objects that match in apparent
gloss.

Just noticeable differences in gloss
Just noticeable difference (JND) metrics can be
used to predict acceptable tolerances in measure-
ment and manufacturing processes. We have at-
tempted to estimate JNDs in gloss for a subset of

A psychophysically-based model of glossy surface appearance
continued from cover

the surfaces we tested. Figure 3 shows these JND
values plotted in terms of the physical parameters
of the Ward model. The ellipsoids indicate the
changes in material properties required to produce
visible changes in gloss for each of the surfaces.
There are several things to notice: lighter surfaces
(high rd) require larger changes than darker ones
(low rd) to produce JNDs; increasing rs reduces
the size of a JND more for lighter surfaces than
for darker ones; and a has little effect on JNDs

over the range of surfaces we tested. These
results may lead to new methods for establish-
ing visual tolerances in the measurement and
manufacturing of glossy materials.

In many ways, this work parallels early
studies done to establish the science of colo-
rimetry. We hope it inspires further research
toward developing psychophysical models of
the goniometric properties of surface appear-
ance to complement widely-used colorimet-
ric models.

James A. Ferwerda
Program of Computer Graphics
580 Rhodes Hall
Cornell University
Ithaca, NY 14853
E-mail: jaf@graphics.cornell.edu
http://www.graphics.cornell.edu/~jaf
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dominant color towards the achromatic reference
point, representing a CC correction. The inclina-
tion towards the corrected reference (open circles
of “white” illumination), rather than the reference
itself (solid circle of “white” illumination) dem-
onstrates the algorithm’s human vision perfor-
mance.  Similar results were obtained in cases
where the scene was illuminated with multiple
chromatic illumination sources.

Hedva Spitzer and Sarit Semo
Department of Biomedical Engineering
Faculty of Engineering, Tel Aviv University
Tel Aviv, Israel
E-mail: {hedva, sarits}@eng.tau.ac.il
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Human color constancy:
model and performance
continued from p. 3

Figure 2. Matching apparent gloss: white, grey, and black objects
having the same physical gloss parameters (top row) and visual
gloss parameters (bottom row).

Figure 3. Just noticeable differences in gloss: the
ellipsoids indicate the changes in material properties
required to produce visible differences in gloss for the
surfaces defined by the three parameters.
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further away. Each frame has three-dimensional
information about the tracer particles, and the ve-
locity distribution can be obtained by analyzing
consecutive frames. Figure 3 shows the result of
this analysis.

The second example is the measurement of a
water surface in a tank. Aluminum powder (20µm)
is strewn over the surface of the water. This pow-
der forms a thin film that moves with any waves
that occur. Multi laser spots (30mW) are projected
onto the surface and are reflected by the alumi-
num powder. Figure 4 shows a recorded image of
multi laser spots using a circular dynamic stereo
system. Information, such as the size and posi-
tion of each streak on the image, is converted to
3D position data for each laser spot, and the wa-
ter surface is thereby reconstructed and can be
displayed (see Figure 5).

Using our system, 3D information about mul-
tiple points can be recorded in a single image at a
given instant, and this information can be extracted
by processing the image. The novelty of our sys-
tem lies in the fact that it allows 3D measurement
of moving objects and those are otherwise un-
stable.

Kikuhito Kawasue
Faculty of Engineering
Miyazaki University
Gakuen Kibanadai Nishi
Miyazaki, 889-2192 JAPAN
E-mail: kawasue@computer.org

Yuichiro Ohya
West Japan Fluid Engineering Laboratory
339-37 Kitamatsuragun, Kosasa
Nagasaki, 857-0401 Japan
E-mail: fel_oya@mx9.freecom.ne.jp

Takakazu Ishimatsu
Faculty of Engineering
Nagasaki University
14-1 Bunkyou
Nagasaki, 857-11 Japan
E-mail: ishi@net.nagasaki-u.ac.jp
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Circular dynamic stereo
system
continued from p. 2

and the external parameters describing the rota-
tion and translation in 3D space between the cam-
era coordinate systems. Taken together, this leads
to a nonlinear relation between 2D matching
points and 3D coordinates.

The approach taken in our case is to first de-
scribe the 3D-from-2D problem in projective
space in which structure is defined relative to some
virtual plane. The projective approach allows the
combination of the two families of parameters into
one set that can be recovered linearly in a straight-
forward manner. This approach is referred to as a
relative affine framework and enables the acqui-
sition of useful 3D information without any form
of internal camera calibration. The linearity of the
process also ensures a unique and stable solution
and is a key factor in allowing the automation of
the measurement process.

The geometric and algebraic constraints of the
3D-from-2D problem, including the combination
with photometric constraints, is described by a
unique family of multilinear forms whose coeffi-
cients form a tensor, known as the “tri-linear ten-
sor”. One of the key features of the tensor is that
it describes the 3D-from-2D constraints under all
possible situations—that is, it is not subject to any
form of singularity—thereby elevating the nu-
merical stability of the measurement process by
an order of magnitude in some typical scenarios.
These include situations where the camera mo-
tion is linear2,3 or where objects’ local geometry
approximate second-order surfaces. Furthermore,
the tensor is a key factor in combining the photo-
metric and geometric constraints, thus giving rise
to a very tight cycle of correspondence and re-
construction and thereby further elevating the ac-
curacy levels and the automation of the process.

The technology described was brought to-
gether into one platform, the OptigoTM system (see
Figure 1), which provides high-accuracy, portable,
3D measurement capabilities. The technology
does not require prior calibration of the system

Three-dimensional measurement
continued from p. 6

and enables accurate measurement even in diffi-
cult industrial environments. OptigoTM systems are
based on a measurement head that includes three
high-resolution CCD cameras, enabling the cap-
ture of large areas. The acquisition time of the
system is less than a second, reducing sensitivity
to vibrations that may exist in industrial condi-
tions. Measurement is achieved by aiming the
optical head at the desired area: 3D measurements
are then made on the basis of 2D images acquired.
The measurements that can be taken include the
acquisition of highly dense coordinates on the
object surface (see, for example, Figure 2), cross-
sections, measurement of features such as holes
and slots, as well as object edges. Enhanced ca-
pabilities allow comparison of measurement data
to their CAD model and visual display of differ-
ences and visualization feedback for manufactur-
ing process control.

Ron Gershon
CogniTens Ltd.
PO Box 1713
47282 Ramat Hasharon
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Phone: +972 3 548-8210
Fax: +972 3 547-2224
E-mail: ron@cognitens.com
http://www.cognitens.com
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continued from p. 5
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stimuli of all reproduced colors differ from the
original.

A multispectral imaging system as described
below solves all these fundamental problems by
capturing the complete spectral light stimuli in
all the pixels of an image and reproducing an ap-
proximation to these original spectral stimuli by
multichannel image reproduction (see Figure 2).
The so-called “multispectral camera” developed
in our laboratory captures an image via 16 nar-
row band spectral filters. These are moved sequen-
tially in front of a B&W-CCD camera by a fast
mechanical switch to capture 16 spectral separa-
tions of an image at 12 bits of resolution (a cam-
era with only eight filters is shown in Figure 2 for
simplicity).4 The 16 separations provide a discrete
scan of the spectral light stimulus in each of the
2000×2000 pixels of the image. Before starting
the capture of an image, the scan of a white refer-
ence is taken and the scanned values of the actual
image are afterwards normalized by the white ref-
erence values.

The output of the camera thus delivers the
spectral scan of an image referenced to illuminant
E, the equal energy distribution of light. This
makes the system independent of the light source
on one hand and, on the other, allows for the in-
troduction of any other light source with its spec-
tral power distribution for reproduction later (by
multiplication of the respective spectra). The
multispectral camera thus allows the capture of
color information without systematic errors and,
in fact, smallest color errors yet are practically
achieved using the developed device. Experimen-
tal errors are <0.25 units of CIE DE94. The cap-
ture of an image takes approximately 30s at
present.

A six-channel display is under development
as a first step. This is realized by two digitally-
controlled cameras equipped with six narrow-band
spectral filters. The six channels are controlled
by the signals of the multispectral camera via an
optimized mathematical algorithm. This allows
for the reproduction of colors with small repro-
duction errors for different observers and, more-
over, a larger volume of colors can be reproduced
compared to conventional three-channel displays.
Even with this system of only six channels, color

Total multispectral imaging
continued from p. 12

reproduction errors for all the 24 observers char-
acterized in Figure 1 are below 1.4 CIE DE94 units
compared to values of at least 8-10 CIE ∆E94 units
in conventional systems.

The amount of data to be handled and trans-
mitted from a multispectral camera to the display
is, of course, much higher than in conventional
tristimulus color systems. Therefore, efficient data
encoding algorithms have been developed to re-
duce the amount of data as far as possible without
losing the required quality.5

First products of the multispectral technology
are offered by “Color Aixperts” in Aachen, Ger-
many. Even when using the multispectral camera
for image capture and reproducing images on a
conventional cathode ray tube, remarkable im-
provement in color quality is achieved because
all systematic errors inherent in conventional
three-channel cameras are completely avoided.
Apart from the reproduction on multi-channel dis-
plays, printing of images captured by the multi-
spectral camera also improves color quality be-
cause the features of a printer can be optimized
better if the exact spectral information of the col-
ors is available at the input. Multichannel print-
ing with six or more printing colors is also under
investigation for future systems.

Bernhard Hill
Aachen University of Technology
E-mail: hill@ite.rwth-aachen.de
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Total multispectral imaging technology
provides high accurate color reproduction
Research at the Technical Electronics
Institute of Aachen University of Tech-
nology is focused on color and electronic
imaging. Fundamental problems of con-
ventional color capture and reproduction
and color management are studied as well
as multispectral imaging. The largest
project, on multispectral imaging,1,2 is
geared towards applications where highly
accurate color reproduction is a must.
Typical examples are digitization and
imaging of textiles, reproduction of the
colors of automobiles and furniture, and
the archiving of art paintings.

To understand the motivation behind
the development of this entirely new color
reproduction system, some fundamentals
of current color reproduction technology
and human color perception should be
considered. The basic color stimulus ac-
tivating the red, green and blue
cones in the retina of the hu-
man eye is a spectral power
distribution of light: either
emitted from a light source or
reflected from the surface of
an object which is being
viewed. The three groups of
cones of the retina of the hu-
man eye collect different parts
of this spectral stimulus ac-
cording to their spectral ab-
sorptions or responsivities and
generate three primary color
signals in the retina. These sig-
nals are afterwards processed
and transmitted to the brain
where they initiate color per-
ception. Typical measured
spectral responsivities (called
“color-matching functions”)
of the cones of 24 observers
are sketched in Figure 1.3 They
vary from human being to hu-
man being, resulting in differ-
ent primary color signals for each individual.
These variations produce one of the fundamental
problems of present technology because the con-
ventional optimization of technical color repro-

duction is based on the color-matching functions
of only one observer, the so called CIE 1931 XYZ
standard observer. Deviations from this observer
have not, up until now, been taken into consider-

ation in our color systems.
Current color-capture devices are

based on a three-channel technology con-
sidered to approximate human color per-
ception of the standard observer. The three
channels of a camera or scanner are there-
fore equipped with spectral filters, trans-
mitting different parts of a spectral light
stimulus in the “red”, “green” and “blue”
region. Three electronic sensors for each
pixel of an image collect the respective
transmitted light and produce three out-
put signals. Color analysis of a sensor of
that kind would be correct if the overall
spectral responsivities of the color chan-
nels exactly matched the color-matching
functions defined for the standard ob-
server. In practice, this replication of hu-
man color vision shows essential disad-
vantages with respect to the signal-to-

noise ratio of electronic color re-
production. Practical color sen-
sors are therefore optimized to
achieve the best signal-to-noise
ratio rather than matching the
standard observer correctly.1 This
causes fundamental errors of
color analysis in all our current
color imaging systems. In any
case, additional errors arise from
practical problems of approxi-
mating theoretically-optimized
spectral responsivities in cameras
or scanners.

Another problem in most cur-
rent systems is caused by the light
source used to capture an image
or scene. Each light source ex-
hibits its own spectral power dis-
tribution that influences the spec-
tral color stimuli and changes the
respective human color percep-
tion. If the same light source used
for image capture is also used for
the reproduction, colors will be

reproduced best. Yet, in most practical applica-
tions, a different light source is used to view a
print than for scanning an image. As a result, the

Figure 1.  Spectral responsivities (color-matching functions) of the cones
of 24 human observers including 2° and 10° observers.

Figure 2. Sketch of a total multispectral imaging system: includes a multispectral B&W-
CCD camera and spectral filter wheel, spectral data encoding, open system interface,
and a decoding and control unit for multichannel projection-type image synthesis.

continued on p. 10


