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Optically-interconnected computing at
Heriot-Watt University
The Department of Physics at Heriot-Watt Univer-
sity, Edinburgh, has been working in the fields of
optical computing and optical interconnects for the
last twenty years. This article will look at two of the
projects recently completed by the current Optically
Interconnected Computing (OIC) Group.

The first of these is the AMOS (Analysis and
Modelling of Optoelectronic Systems) project which
is an investigation of the impact of a highly-inter-
connected, high-bandwidth interconnect on a com-
modity-PC-based cluster. We constructed a set of
models to describe an optical highway consisting of
a number of nodes interconnected by a free-space
optical system.1 Each node consisted of a PC and a
smart-pixel array (SPA) providing the optoelectronic
interface and, potentially, other functionality such
as caching or low-level network operations (see Fig-
ure 1). The Institute of Informatics at The Univer-
sity of Leeds then used this description of the hard-

ware in simulations of a number of algorithms. The
models used for the AMOS project allow for a large
degree of freedom in designing the optical system,
choosing the PC architecture, and designing the al-
gorithm to run on it.

It was clear that the relatively low bandwidth of
the PC I/O bus would limit any system connected to
it. It was found that the optical highway can enhance
the performance of a PC cluster in two ways. First,
the massive interconnectivity can be used to create
large, completely-connected (or near-completely-
connected) networks. This high connectivity reduces
the latency of messages as fewer routing decisions
are required and fewer network links are travelled.
Second, some functionality—such as a random steal-
ing load balancing algorithm—can be implemented
on the SPA layer. Here, tasks are stored on the SPA

Figure 1. Schematic of the optical highway model used in the AMOS project. This shows
the highest level of abstraction. Each parameter is obtained from lower level models of
the system.

Continues on page 9.
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Detection of 3D object position using
a lens array and joint-transform correlator
Over the past few decades,
considerable progress has
been achieved in image rec-
ognition techniques using
optical correlators in the two-
dimensional (2D) plane. This
progress has included the de-
velopment of numerous tech-
niques for scale, rotation, and
shift-invariant detection. Re-
cently, however, a new type
of optical correlator capable
of performing a correlation
operation in three-dimen-
sional (3D) space has at-
tracted attention. The 3D
correlator extends the region
of the correlation operation
from the 2D plane to a 3D
space while retaining the ad-
vantages of the conventional
2D correlator. Among sev-
eral proposed methods,1-4 the
lens-array-based technique is
advantageous because it al-
lows for the capture of many
object perspectives simulta-
neously. This results in a rela-
tively small digital process-
ing load. We have been de-
veloping such a 3D-image-
recognition technique.

Figure 1 shows the setup
used: reference and signal
objects are imaged by the
lens array and the resulting
elemental images are cap-
tured by charge-coupled de-
vices (CCDs). Each elemen-
tal image contains informa-
tion concerning the corre-
sponding perspective accord-
ing to the relative position of
each lens to the object. Our
method involves some digi-
tal processing of the
elemental images, followed
by use of a joint-transform
correlator (JTC) between the corresponding el-
emental images of the reference and signal ob-
jects. The 3D position of the signal object is ob-
tained by locating elemental image pairs in which
perspectives can be made the same by resizing
the elemental images with respect to their cen-
ters. Such pairs satisfy two conditions: the elemen-
tal images should have the same perspective of
the objects, and the positions of these perspec-
tives should only be dependent on the distance of
the object from the lens array (and, therefore, in-
dependent of the lateral position of the elemental

lens).
The perspective captured by each elemental

lens depends on the angle at which it views the
object. This is determined by the ratio of the dis-
tance of the object from the lens array and the
difference in lateral position between the center
of the object and that of the elemental lens. The
position of the perspective in the elemental im-
age also depends on the ratio of the object dis-
tance (from the lens) and the difference between
the lateral position of the object and its corre-
sponding elemental lens. The size of the perspec-

tive only depends on the ob-
ject distance.

Assuming that the signal
object and the reference ob-
ject are identical—with no
lateral shift—but are posi-
tioned at different distances
from the lens array, the el-
emental image pairs cap-
tured at the same non-zero
angles cannot be made the
same by adjusting their size
while fixing their centers.
This is despite the fact that
they represent the same per-
spective of the objects. This
is because the positions of
the perspectives with respect
to the centers of the corre-
sponding elemental images
are the same, while the sizes
of the perspectives are dif-
ferent. Only the elemental
image pair at angle zero can
be made the same by adjust-
ing its size, since the lateral
positions of the correspond-
ing elemental lens with re-
spect to the objects are ze-
ros. Thus the condition re-
lated to the perspective po-
sition is satisfied.

When the signal object
shifts laterally, the elemen-
tal lens at angle zero
changes. The difference in
lateral position between the
elemental lenses at angle
zero can be approximated as
the lateral shift of the object.
At the same time, this limits
the maximum error to a
value below the half spacing
between adjacent elemental
lenses. Since the longitudi-
nal position of the object can
be obtained by the size dif-
ference between the same

perspectives, the 3D position of the signal object
with respect to the reference object can be ob-
tained by detecting, scale-invariantly, the elemen-
tal image pair with angle zero views.

For scale-invariant detection, we apply the
Mellin transform. As this provides information
about the size of the input images, the longitudi-
nal position of the signal object with respect to
the reference object can be found. Before perform-
ing the Mellin transform, however, we change the

Figure 1. Three-dimensional correlator using a lens array.

Figure 2. Flow-chart of the proposed 3-D correlation technique.

Continues on page 9.
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All-optical pulse generators for optical computing
The promise and power
of an optical computer is
that it can do things that
can’t be done by a digital
computer. But a digital
serial machine can emu-
late almost anything, and
in the past there have
been repeated instances
where supposedly intrac-
table problems have
yielded to the rising tide
of digital processing
power, memory and
speed. Can we expect op-
tical computers to ever
accomplish anything that
cannot be done by a
now—or future—digital
computer? It is a good
question. There are good
answers, some of which
I will describe here, of
one-step parallel compu-
tational methods for op-
tical pulse networks.

Pulse generator
mechanisms
A general model for gen-
erating pulse waveforms
consists of two nonlinear
signal response elements
coupled as an excitatory-
inhibitory pair (see Figure 1). If G

A
= Step(A-A

0
)

and G
B
= kB (see Figure 2) then when A rises above

A
0 
the inhibitory element’s internal activity B re-

ceives a step increase. This in turn abruptly de-
creases A to below the threshold A

0
. The step func-

tion is first triggered and then almost immediately
reset to zero. It is a simple integrate-and-fire gen-
erator.

Optical pulse generators
An elegant pulse generator by Wang1 uses a mixed
excitatory-inhibitory pair of elements with biased,
subtractive, inhibition as well as shunting inhibi-
tion for both elements. It consists of a
photorefractive cube whose induced grating is the
result of the interaction between the incident la-
ser beam and a part of the output beam that is fed
back to the cube (see Figure 3). As soon as the
grating is formed, it shunts away the feedback
beam. This destroys the induced grating, which
lets the feedback beam return, and the cycle re-
peats.

Another pulse generator by Wang (see Figure
4) uses a nonlinear Fabry-Perot etalon. Here, the
liquid crystal itself provides multiple competitive
nonlinearities. Pulse rates above 100 Hz have been
achieved with this system (see Figure 5).

One-step information processing
What can one compute in a single step? We are

Figure 2. Nullcline diagram of a pulse generator.

Figure 3. A photorefractive pulse generator.

Figure 1. An excitatory-inhibitory pair.

Figure 4. A nonlinear F-P pulse generator.

Figure 5. Three by three array: pulse generator output
sequence.

Continues on page 9.

accustomed to thinking in terms of
serial architectures where each step
accomplishes only a small part of the
computation. But parallelism is the
rule in neural systems, so we can look
to them for some ideas and basic tools
on how to perform an entire compu-
tation in a single step. A completely
parallel input consists of a field of
pulses within a single short time interval. The or-
der of arrival of the pulses carries information as
a time-of-arrival or rank-order code. Thorpe et.
al2,3 shows that many complex neural algorithms
can be implemented by these codes.

Consider a group of N neurons, K of which
have fired within a time window T. If we use the
average firing rate, the only information we get is
that K out of N+1 possible counts occurred in the
time interval. The information capacity available
is log

2
(N+1) bits. This is one of the lowest infor-

mation-bearing coding schemes. An interspike
time-interval code gives the opposite extreme. For
a time resolution D there are V=T/D possible val-
ues per channel. For each of those we can choose
V values of the next channel, and so with N chan-
nels we have VN possible choices, and an infor-
mation capacity of N*log

2
V bits. Finally, the rank-

order coding method allows N! possible states and
has an information capacity of log

2
N! bits.

An integrate-and-fire pulse generator has an

increasing firing rate with increasing input signal
strength. The neurons that fire first are those with
the strongest input signals. Since their inputs can
be tuned by the shape of their receptive fields to a
variety of geometrical features (contrast, orienta-
tion, and lines, for example), the first pulses to
arrive are those from the most prominent features
and important parts of the image. Thorpe’s work
shows that most of the information content of
images is contained in the first 1%-2% of the
pulses.

Summary
Optics allows the design of non-digital, massively-
parallel architectures, but its very virtue (linear
superposition) prevents it from forming logical
elements. The design of all-optical pulse genera-
tors provides this additional capability. Review
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Polarity-controlled growth of III-nitrides and their
potential applications in optoelectronic devices
Semiconductor-based optoelectronic
devices have formed the basis for opti-
cal computing.1 However, applications
have been limited by the lack of mate-
rials that work efficiently in the green-
to-ultraviolet regions. In last decade,
III-nitrides have emerged as the most
promising candidates for short-wave-
length optoelectronic devices. Much
progress has been made in III-nitride
growth, but the technology is still not
sufficiently developed to grow AlGaN/
(In)GaN multiple quantum well struc-
tures (MQWs) for ultrahigh perfor-
mance devices such as VCSELs or
intersubband-transition quantum struc-
tures.

One of the main characteristics of
III-nitrides is polarity, which is of major impor-
tance both in the epilayer growth and device fab-
rication.2 Many factors have been reported to af-
fect epilayer polarity: these include the growth
method, substrate nitridation, buffer-layer mate-
rials, buffer-layer growth temperature, growth
rate, etc.. To date, films grown with Ga polarity
show superior properties to those grown with that
of N. A high-temperature-grown AlN layer, or In
irradiation on the growing surface, have been re-
ported to reverse N polarity to that of Ga. More
recently, it was found that, during AlGaN/GaN
growth, the epilayer polarity can swing from that
of Ga to N and back again frequently depending
on the growth temperature. However the related
mechanisms are not yet clear. To grow high-qual-
ity MQWs and supperlattices for sophisticated op-
toelectronic devices, it is crucial to clarify these
polarity selection processes and inversion mecha-
nisms.

We have systematically investigated the po-
larity selection and conversion process of GaN
grown using moecular beam epitacy (MBE).
Based on this work, we have established a frame-
work for the understanding, control and manipu-
lation of GaN polarities. We have also consid-
ered the potential application of polarity-con-
trolled growth in optoelectronic devices. (Details
of the MBE growth process and the characteriza-
tion of polarities of GaN films by coaxial impact
collision ion scattering spectroscopy (CAICISS)
have been reported elsewhere.3,4)

First, sapphire-substrate surface termination
was investigated by in-situ CAICISS during the
thermal cleaning process (up to 850˚C in ultra-
high vacuum). It was revealed that the sapphire
(0001) surface became Al-terminated when the
substrate temperature was raised to 700˚C, and
Al-rich sapphire surface could be obtained after
thermal cleaning treatment at 850˚C for 30min.

For a GaN epilayer grown on a non-nitrided
sapphire substrate, well-defined Ga polarity was

shown. For a film grown on extensively-nitridated
sapphire substrate, N polarity was not pure: there
was a 5% Ga-polarity inversion domain. These
results provided a framework to enable us to un-
derstand the polarity of the GaN epilayer. Both
thermal cleaning and nitridation must be taken into
account.

Ga polarity is preferred for GaN grown on a
non-polar sapphire substrate after thermal clean-
ing, which can make it Al-rich. Is it possible to
reverse GaN polarity by introducing an ultra-thin
Al layer? The answer to this question is techno-
logically important, both for polarity manipula-
tion and the elimination of the polarity inversion
domain. Results show that, by depositing two
monolayers (ML) of Al on GaN with N polarity
during epitaxy, a Ga-polarity epilayer could be
obtained. The related mechanism is schematically
shown in Figure 1. Geometrically, it is identical
to the bonding of two N-polarity layers by two
ML of Al. Extensive work has been done on the
polarity-conversion process via an Al insertion
layer.3,4

GaN polarity selection on an AlN intermedi-
ate layer was also investigated, with emphasis on
AlN surface stoichiometry. Basically, high-tem-
perature AlN intermediate layers of about 20nm
thick were grown on N-polarity GaN in N-rich or
Al-rich conditions.4 The results showed that AlN
intermediate layers grown in N-rich conditions did
reverse the N to Ga polarity, while those grown
in Al-rich conditions could also reverse the GaN
polarity. Furthermore, experiments showed that
excess Al was crucial for the realization of GaN
polarity conversion, consistent with polarity con-
version by Al insertion layers.3

The potential applications of polarity control
are not only for the growth of unipolar epilayers
and the elimination of mixed polarities, but also
for the the minimization of the negative effects of
the intrinsic, huge, spontaneous, polarization and
pyroelectric fields that exist at the hetero-inter-

faces of grown polarity-inverted struc-
tures.

One positive use of mixed polarity is
that the inversion-domain boundary has
been reported as an optically-active cen-
ter for carriers.5 This kind of inversed do-
main is promising as a means of enhanc-
ing the performance of ultraviolet LEDs
by using mixed-polarity GaN as the ac-
tive layer.

Homo-epitaxy of GaN on a hydride-
vapor-phase-epitaxy- (HVPE-) grown
template is attractive because of the ex-
pected high quality and simple structure
of the device. However, Ohmic contact to
the N polarity surface has proved difficult.
By applying polarity-controlled growth,
we can get a GaN substrate with Ga po-

larity both on the front and back surfaces: favor-
able for device processing. The polarity-inversion
structure sandwiched with the ultra-thin Al layer
shown in Figure 1 should prove useful in the inte-
gration of electronic and optoelectronic devices.

A. Yoshikawa* and K. Xu
*Center for Frontier Electronics
and Photonics
Department of Electronics
and Mechanical Engineering
Chiba University
1-33 Yayoi-cho, Inage-ku
Chiba 263-8522, Japan
Tel: +81 43 290-3990
Fax: +81 43 290-3991
E-mail: yoshi@cute.te.chiba-u.ac.jp
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Femtosecond optical information
processing via Fourier optics
In the Ultrafast Optics and Optical
Fiber Communications Laboratory
at Purdue University, our research
focuses on femtosecond Fourier-op-
tical techniques for processing ultra-
high-speed, broadband, optical sig-
nals. The application of Fourier-op-
tical ideas in the ultrafast time do-
main— originally explored in the
context of spatial image process-
ing—is extremely fruitful and pro-
vides rich possibilities for high-
speed optical signal processing. Our
research aims to develop new and so-
phisticated signal manipulation tech-
niques within the context of ultrafast
optics, and to apply these techniques
to problems in ultra-high-speed
communications.

In the following, I briefly touch
on some of the work in my laboratory on ultrafast
optical techniques for synthesizing, transmitting,
processing, and receiving optical waveforms and
bit sequences with features in the femtosecond
regime. An important theme is the conversion
between time, frequency, and space domains via
time-domain Fourier-optical approaches, empha-
sizing realizations compatible with the require-
ments (wavelength, power, speed) of real-world
photonic applications.

For some time my group has been actively
pursuing linear, ultrafast, optical-pulse-shaping
techniques, which allow programmable synthe-
sis of nearly arbitrary ultrafast optical waveforms
via wavelength-by-wavelength control of the com-
plex optical spectrum. This technology is now
widely employed in ultrafast optical science, par-
ticularly for research on coherent control of quan-
tum mechanical motions. Here I discuss pulse
shaping from the perspective of applications in
linear and nonlinear photonics. Examples of our
research are introduced in the following para-
graphs.

• We have applied Fourier-transform femtosec-
ond pulse shaping1,2 as a spectral phase equal-
izer for programmable fiber dispersion com-
pensation. This enabled us to demonstrate dis-
tortion-free transmission of pulses as short as
400fs over 10km fiber spans, despite the fact
that dispersion broadens these pulses by over
1000 times prior to compensation.3,4 We also
applied pulse shaping to simple experiments
with ultrashort-pulse optical code-division
multiple-access (O-CDMA) communications,
resulting in suppression of multi-access inter-
ference for error-free operation.5 Other groups
have applied our pulse-shaping geometry in
WDM, resulting in, among other things, com-
mercial products permitting wavelength-by-
wavelength gain equalization and switching.

• Recently, we demonstrated the operation of a
new, direct space-to-time (DST) pulse shaper,
applicable to an ultrafast optical parallel-to-se-
rial converter concept. This could potentially
offer operation at multi-GHz frame rates (see
Figure 1). Our apparatus generates a serial out-
put in the ultrafast time domain that is a di-
rectly-scaled version of an input spatial pattern.
In the future we hope to modify the input spa-
tial patterns with sub-nanosecond frame times
using optoelectronic modulator arrays. The re-
sult wil be an optical word generator,
reprogrammable at these high rates. We have
implemented versions of the DST pulse shaper
in both bulk optics6 and integrated-optical ar-
rayed-waveguide-grating technology.7 Interest-
ingly, the DST pulse-shaper geometry functions
as a new type of generalized spectrometer with

a user-definable, and potentially
highly structured, spectrometer re-
sponse function.

• We have also obtained new sig-
nal-processing functionalities by
combining pulse shaping with non-
linear optics. Examples include: a
spectral, nonlinear-optical time-to-
space (serial-to-parallel) con-
verter8-10 for ultrafast demulti-
plexing and waveform measure-
ment; and a novel spectral
correlator for ultrafast waveform
recognition in O-CDMA receivers
based on narrow-band second har-
monic generation.11,12 Figure 2
shows spatial images of ultrafast
optical bit sequences at 1.56µm
wavelength produced by our spec-

tral nonlinear-optical time-to-space con-
verter.10 To our knowledge, this is the first
demonstration of time-to-space converter op-
eration in the lightwave communications band.
Both our time-to-space and spectral correlators
have already demonstrated nonlinear-optical
conversion efficiencies sufficient to support
real-time operation without signal averaging,
with high signal-to-noise available directly at
the repetition rate of our laser. These are im-
portant steps towards practical application of
these novel, Fourier-optics-inspired technolo-
gies for ultrafast and broadband optical sig-
nal processing.

A. M. Weiner
School of Electrical and Computer
Engineering
Purdue University
West Lafayette, IN 47907-1285
Tel: (765) 494-5574
Fax: (765) 494-6951
E-mail: amw@ecn.purdue.edu
http://dynamo.ecn.purdue.edu/~amw
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Figure 1. Ultrafast optical parallel-to-serial converter concept.

Figure 2. Time-to-space converter images of
ultrafast optical pulse sequences in the lightwave
communications band. The pulse spacing for the
sequence on the left was 2.2ps.

Continues on page 11.
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A fiber Bragg grating senses underwater sound
Using an optical fiber to sense
acoustic waves in water has several
advantages. First, the low propaga-
tion loss of fiber, especially in the
wavelength range around 1.5mm,
allows us to monitor the signal from
a distance. Second, the optical fiber
transmission line is inherently im-
mune to electromagnetic interfer-
ence. Third, many kinds of sensing
and/or controlling signals can be
transmitted through a fiber, and
power can be supplied through the
same fiber in some cases. In addi-
tion, the sensitivity and dynamic
range of the fiber acoustic sensor in
water are excellent.

When an ordinary optical fiber
is used as the sensing element, de-
tection is usually based on an opti-
cal phase shift produced under the
influence of an acoustic field: the
dynamic pressure. This is exploited
in the ocean-based hydrophone ar-
ray system.1

However, fiber Bragg gratings
(FBGs) are now the star players in
the field of optical fiber sensors, and
have been successfully used to de-
tect sound in water.2,3 Under the in-
fluence of sound pressure, the FBG
modulates—either in reflection or
transmission—the intensity of nar-
row-spectrum light incident upon it.
The characteristic feature of the
FBG hydrophone based on inten-
sity-modulation is its simplicity. The
phase shift in the lead fiber of the
sensor, sensitive to external distur-
bance, does not influence sensor op-
eration unless some of the light
power leaks out (because of the
physical deformation of the fiber
such as bending).

Figure 1 shows a prototype of
the FBG hydrophone head that we
made. An FBG is embedded in sili-
cone rubber. One side of the FBG
fiber is cut at an angle of 8˚ in order
to reduce the back reflection from
the end facet, and the other side is
attached to an FC/APC optical con-
nector. To use the FBG hydrophone,
narrow-spectrum light (such as a
laser beam) must be supplied via an
optical circulator or fiber coupler:
the circulator is preferable because of its higher
performance. The wavelength of the light should
be tuned to the slope of the FBG reflection-spec-
trum curve, on either the longer or shorter wave-
length side.

When the hydrophone is placed in water where
an acoustic field is present, the light reflected from

The hydrophone was examined in the
acoustic frequency range from 1kHz to
3.2MHz and found to work well: the
sensitivity was nearly constant. The
lowest sound pressure that we measured
with the hydrophone in Figure 1 was
about 80dB for 1mPa at 20kHz. This is
not considered to be a lower limit be-
cause the sensor has not yet been opti-
mized and development is still in
progress. The dynamic range of the
measured sound pressure was about
90dB. The strongest sound pressure
measured is not limited by the perfor-
mance of the FBG hydrophone but by
the ability to produce large acoustic
fields in water with our laboratory
equipment.

Figure 2 shows an FBG hydrophone
head that has directional sensitivity.
Two FBGs are in a single fiber and have
different Bragg-reflection wavelengths.
For sensor operation we need to prepare
two narrow-spectrum light sources
whose wavelengths are adjusted in the
similar way to the hydrophone in Fig-
ure 1. Each beam is intensity-modulated
by its own FBG and the transmitted light
is detected by a photodiode. Specifi-
cally, the photocurrents produced in the
photodiode by the two optical wave-
lengths are added together in the photo-
diode, resulting in the directional depen-
dence of the sensor sensitivity as shown
in Figure 2.

Nobuaki Takahashi
Department of Communications
Engineering
National Defense Academy
1-10-20 Hashirimizu
Yokosuka, Kanagawa 239-8686
Japan
E-mail: tak@nda.ac.jp
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the hydrophone is intensity-modulated by the
sound pressure applied to the FBG. The detection
of the light with a photodiode gives us a signal
that is directly proportional to the acoustic field
in the water: from the resulting temporal wave-
form, the amplitude and phase of the field can
easily be measured after the necessary calibration.

Figure 1. FBG hydrophone head.

Figure 2. FBG hydrophone with directional sensitivity.
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Attractive potential for donor and acceptor states in
photonic crystals with defects

and Sipe,6 we obtain a time-dependent equation
of the envelope function F

n
(r,t):

This equation is the evolution equation of the
EM-wave envelope function under the k ⋅ p
theory, which is the generalized Klein-Gordon
equation and which reduces to the Klein-Gordon
equation7 in an isotropic medium. It indicates that
there is an energy-storing mechanism near the
band edges.8

Here we have defined m
n
=h ω

n
(k

0
)/c2 as the

inertial mass of a quasi-particle of photons. Here
k is a wave vector that lies within the first Brillouin
zone and k

0
 is a specific wave-vector at the band

maximum or minimum. The inertial mass m
n
 de-

pends on the band index n and is quantized, and
U(r)= ±(m

n
c)2V(r) with the plus (or minus) sign

given for the air-band (or the dielectric-band) QP.
U(r) is a potential produced by the defect and is
negative as an attractive potential for the air-band
QP with a dielectric defect. It is an attractive po-
tential for an air defect in the dielectric band QP
with V(r)>0. There is no attractive potential
(U(r)=0), when the inertial mass of a QP is zero
(m

n
=0). Therefore, from the existence of an iner-

tial mass, a QP of Bloch photons can be trapped
by an arbitrarily weak attractive potential in one
dimension, but not in three.

Summary
That the QP possesses inertia successfully ex-
plains not only the trapping effect of defects in a

Tell us about your news, ideas, and events!

way analogous to quantum mechanics, but also
explains the dielectric and air defects production
of donor and acceptor states in the photonic band
gap (PBG). The trapping effect of defects in PBG
is similar to that in quantum mechanics in that an
arbitrarily weak attractive potential can bind a state
in one dimension, but not in three. These phenom-
ena cannot be explained by the microcavity theory
because it has no attractive trapping potential
when the inertial mass of a QP is zero (m

n
=0).
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tional Science Council of Republic of China un-
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Using the k ⋅ p theory to study photons in a pho-
tonic crystal with defects, we have found that the
incident photon excites a quasi particle (QP) of
photons from the periodic background field. This
QP contains an inertial mass due to an energy-
storing mechanism in the photonic crystals. We
found the trapping of the QP is similar to quan-
tum mechanics, in that an attractive potential
formed at the defect that is linearly proportional
to the product of the inertial mass and the nor-
malized dielectric constant in a way that cannot
be explained by microcavity theory.

If a small defect is introduced in the photonic
crystal, it is possible to create highly-localized
defect modes of the EM wave inside the gap.
These defect modes are analogous to the local-
ized impurity states in a semiconductor.1 From
special relativity, a moving particle with inertia
always has a rest frame. However, there is no rest
frame for the massless photon, since it moves with
the velocity of light c in every frame of reference.2

It is obvious, then, that a defect can stop and trap
a particle with inertia, but not massless photons.
We will explain the trapping effect of defects in a
photonic crystal by proving that the equation of
motion of the envelope function indeed includes
an inertial-mass dependent trap potential.

We start from the Hermitian equation of mag-
netic field H(r) for studying the photonic crystal:

,

where ε(r) is the periodic dielectric constant and
V(r) is the normalized defect dielectric disorder.
By expanding H(r) in terms of Kohn-Luttinger
function, we can define the reciprocal effective-
dielectric tensor3,4 near the band edge as in Refer-
ence 5. By following the derivation of de Sterke
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A photorefractive polymer for
3D bit optical data storage and micro-fabrication
The requirement for increasing
information storage capacity has
been the driving force behind
several new and innovative
methods. The two main direc-
tions that this research has taken
focus on reducing the size of the
information bits stored in a single
layer, and recording multiple lay-
ers/pages in order to use the re-
cording medium’s volume.
Three-dimensional bit optical
storage falls under the second
category, whereby multiple lay-
ers are recorded through the
depth of the recording medium.
In this article we report on our
recent development of rewritable
3D bit optical data storage and
the formation of micro-voids in
a photorefractive polymer.

Photorefractive polymer is a
promising material for optical
data storage and other photonic
applications. We recently re-
ported on the photorefractive ef-
fect under two-photon excitation
in a photorefractive polymer,1

which should make possible the
developement of a low-cost,
rewritable, 3D optical storage sys-
tem (see example in Figure 1).
The used photorefractive polymer
consists of 2,5-dimethyl-4-(p-nirtophenylazo) ani-
sole (DMNPAA), 2,4,7-trinitro-9-fluorenone
(TNF), 9-ethylcarb-azole and poly(N-vinylcarba-
zole) (PVK).

To record multiple layers within a homoge-
neous medium, a nonlinear interaction between
the recording laser beam and the material needs
to take place. This was achieved using two-pho-
ton excitation; whereby the region of excitation
depended quadratically on the intensity of the in-
cident light. Typically, an ultrashort laser pulse is
used because the cooperative nature of two-pho-
ton excitation requires the use of a high-peak-
power laser to produce efficient excitation.This
increases the cost of the recording device and
makes it difficult to produce a compact system.

We demonstrated that the use of continuous-
wave illumination for two-photon excitation was
possible in a poly(Methyl Methacrylate) (PMMA)
based photorefractive polymer.2 Figure 2 shows
the writing, erasing and rewriting of information
into the same region of the photorefractive poly-
mer. Figure 2(b) shows the same region as seen
in Figure 2(a) including a recorded pattern (the

letter E), after being exposed to the ultra-violet
illumination for 1-2s. The result is the complete
erasure of the previously recorded information.
In Figure 2(c), a new pattern (the letter F) is writ-
ten into the same area used in Figures 2(a) and
(b). Two artifacts (marked 1 and 2 in Figures 2(a-

c)) show that the same area was
used in each case.

Another advantage of the
PMMA-based photorefractive
polymer is that the transition
region from the erasable nature
to the optical damage point is
short. Thus it is a good candi-
date for fabricating microstruc-
tures under multi-photon exci-
tation. We have observed the
formation of voids in the
PMMA-based photorefractive
polymer according to the mi-
cro-explosion mechanism.3

One of the applications of the
voids is in read-only 3D bit
optical data storage, as shown
in Figure 3. If the laser beam
used for forming a void is
scanned at an appropriate
speed, a microstructure can be
created.

We have extended the tradi-
tional role of photorefractive ma-
terials to encompass a new range
of photonic applications. Further
research is likely to include the
formation of complex 3D
waveguides and photonic bandgap
structures.

The authors would like to ac-
knowledge the support from the

                         Australian Research Council.
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Figure 1. Recorded 24×24 bit patterns at different depths in the photorefractive polymer
using two-photon excitation. The spacing between adjacent layers is 20µm, and the bit
separation is 3.2µm. (a-c) The first, second and third layers including the letters ‘A’, ‘B’,
and ‘C’, respectively.

Figure 2. Demonstration of writing, erasing, and rewriting in an area under continuous-
wave illumination with power 75mW and wavelength 800nm. (a) Letter ‘E’ is recorded.
(b) Letter ‘E’ is erased after being exposed to UV illumination for 1-2s. (c) Letter ‘F’ is
recorded in the same area.

Figure 3. Multi-layered arrays of voids in a third type of
PMMA-based photorefractive polymer. (a) The first
layer, including the letter ‘A’, is recorded near the
surface. (b) The second layer, including the letter ‘B’, is
recorded 15µm deeper than the first. The images are
readout by confocal reflection microscopy.
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layer for their corresponding PC and transferred
to them as required. If a SPA starts to run out of
work, it randomly collects tasks from other SPAs.
By implementing this at the optical-highway level,
the large amount of network traffic created by this,
often speculative, transfer of jobs is independent
of the processing system’s I/O bus.

In our group’s second project, NOSC (Neural
Optoelectronic Switch Controller), an optoelec-
tronic neural network was constructed using op-
tics to perform interconnection and off-the-shelf-
electronics to provide neuron functionality. Al-
though it is relatively simple to connect two people
via a switch, real systems must accommodate
many connections simultaneously: even under
adverse conditions such as localized overloading
or hardware failure. Neural networks have the
ability to solve such scheduling problems effi-
ciently, but limitations to the complexity and
scalability of electrical interconnects on a con-
ventional silicon chip have so far hindered the con-
struction of any hardware.

In the system, arrays of detectors and VCSELs
act as neuron inputs and outputs with complex
neural interconnection patterns woven through
free-space using a single diffractive optical ele-
ment. Neural summation is simply the amount of
light incident on a neuron’s detector. All that elec-
tronics need do is choose the neuron’s next re-
sponse based on input light and communicate with
the outside world. The first generation demonstra-
tor,2 constructed in collaboration with BT, took
up the majority of an optical bench. The recently
completed second generation demonstrator
pushed integration and functionality further: the
hardware now fits into a shoe-box. The third gen-
eration, currently at the concept stage, is intended
to fully integrate the commodity components cur-
rently used onto a single chip. This level of inte-
gration is approaching that required for commer-
cial viability.

Optically-interconnected computing
at Heriot-Watt University

The adaptation and optimization of algorithms
for the specific hardware used, has considerably
increased system scalability and performance. In-
deed, doubling the size of the packet-switch rout-
ing problem only increases the time required to
reach a solution by a couple of percent. Since the
range of problems that a neural network can solve
is vast, minimal alteration allows adaptation to a
variety of tasks. These range from image recog-
nition to general optimization and task allocation
problems.

Heriot-Watt’s OIC Group is now starting on
two new projects. One, a European Union funded
project, is to construct—with a number of col-
laborators—an optically-interconnected proces-
sor-memory bus for a multi-processor machine.
The second is to integrate optical interconnects
with reconfigurable silicon electronics in the form
of Field Programmable Gate Arrays (FPGAs).
Both of these will build on the successes of the
previous projects.

Gordon A. Russell, K. J. Symington,
and J. F. Snowdon
Department of Physics
Heriot-Watt University
Edinburgh, Scotland, UK
E-mail: g.a.russell@hw.ac.uk
http://www.optical-computing.co.uk
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coordinate system of each elemental image to
polar coordinates about the center of the elemen-
tal image. This increases discrimination ability.

Figure 2 shows an overall flow-chart of the
proposed method. Each elemental image is trans-
formed to polar coordinates and the r-coordinate
is changed to ln(r) for the Mellin transform. The
f-coordinate needs not be changed since the f-co-
ordinate is not dependent on the size of the im-
age. Each elemental image of the reference ob-
ject is then correlated with the set of the elemen-
tal images of the signal object by JTC. The 3D
position of the signal object relative to the refer-
ence object can be found by detecting the elemen-
tal image pair at angle zero that produces the high-
est correlation peak. The lateral shift represents
the lateral spacing between two elemental lenses
at angle zero, and the longitudinal shift can be
found by the size difference of the perspective,
calculated from the position of the correlation peak
with respect to the center of the corresponding
elemental image.

This approach can be improved further by non-
uniformly placing the entire set of elemental im-
ages of the reference and signal objects in the in-
put plane of the JTC simultaneously. This de-
creases processing time since correlations between
all the pairs of elemental images are obtained at
once.
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Continued from page 2.

of first-pulse processing techniques from neural-
network-modelling research shows that there are
significant and meaningful computations that can
be done with fully-parallel, pulse-based algo-
rithms.

John L. Johnson
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Femtosecond optical
information processing

Continued from page 12.

requirement using hydropathy and classifica-
tion coding to extract similarities between se-
quences. Figure 2(a) shows the classification cod-
ing rule4 where 20 amino elements are classified
into four groups according to side-chain charac-
teristics: nonpolar, polar, acidic , and basic. Four
code patterns are assigned to the individual groups.

Figure 2(b) shows the matching result. The
positions of the broken and shifted segments in
Figure 2(b) match the positions of deletion or in-
sertion obtained by CLASTAL W, a popular
alignment tool. Figure 2(b) indicates that SCMM
is effective for extracting similarity, with ambi-
guity, between amino-acid sequences using the
new coding rule. These features are expected to
be useful for extracting weak sequence similari-
ties, such as motifs,4 and to detect homology over-
looked by current genome-analysis tools.
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Information extraction from amino-acid sequences using
a spatially-coded moiré matching technique
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Information extraction from amino-acid sequences using
a spatially-coded moiré matching technique
Optical computing techniques
are expected to be useful for
large-scale information process-
ing by exploiting features of light
such as large parallelism, huge
information capacity, excellent
visualization capability, and so
on. However, relatively few of
these techniques have been used
in practical applications. It has
been pointed out that when suit-
able applications of optical com-
puting have been properly dem-
onstrated, the situation within the
field will improve.1 Spatially-
coded moiré matching (SCMM),
a method of matching strings,
should prove useful in genome
sequence analysis and, thus, is
expected to be a practical tech-
nique based on optical comput-
ing.

Figure 1(a) shows the
SCMM processing procedure.1

First, images of the target strings
S

1 
and S

2
 are built up: each com-

posed of patterns obtained in ac-
cordance with the coding rule.
Figure 1(b) depicts the rule as-
signing each of the DNA bases—
A, G, C, and T—to a spatial code
pattern. Moiré fringes are ob-
tained by overlapping two coded
images with a small intersection
angle.

The output moiré patterns
provide the result of the match-
ing operation for multiple com-
binations, with different amounts
of relative shift between the se-
quences, in parallel. The patterns
contain useful information, al-
lowing the  extraction of func-
tion, the prediction of the evolu-
tionary relationships between
species, and so on. Bright seg-
ments in the moiré fringes appear
at positions where both target
elements are identical. Deletion

and insertion between sequences
are extracted as discontinued seg-
ments. Reiterated sequences are
obtained as short segments
aligned vertically.2

Although the SCMM tech-
nique provides outputs similar to
the dot matrix method,3 the
former has various advantages.2

Though the dot matrix is one of
the fundamental methods for se-
quence comparison, and is widely
used in genome analysis, the
SCMM has a visualization capa-
bility that comes from its optical
nature. We have constructed the
prototype matching-information
terminal based on the SCMM.2

With the help of a personal-com-
puter-controlled display, the ter-
minal allows dynamic change in
the target strings, easy access to
genome databases, and other fea-
tures useful for genome sequence
analysis.

The SCMM technique can be
extended to amino-acid sequence
comparison by a specific coding
rule. Amino-acid sequence
matching is different from DNA
sequencing, because amino-acid
elements cannot be dealt with as
simple letters. This is because, in
amino-acid sequencing, the
chemical characteristics of the
amino acids are important in or-
der to determine the structure and
the function of the protein. Also,
amino sequences with weak simi-
larity often construct highly simi-
lar structures and have common
functions. Therefore, a matching
operation permitting some ambi-
guity is required for amino-acid
sequence analysis.

The SCMM can satisfy this

Figure 1. (a) SCMM processing procedure. (b) Code patterns for DNA bases.

Figure 2. (a) The classification coding rule. (b) Amino sequence matching
using the classification coding rule. Continues on page 11.


