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The Korean Brain Neuroinformatics Re-
search Program has two goals: to under-
stand information processing mechanisms 
in biological brains and to develop intel-
ligent machines with human-like functions 
based on these mechanisms. We are now 
developing an integrated hardware and 
software platform for brain-like intelligent 
systems called the Artificial Brain. It has 
two microphones, two cameras, and one 
speaker, looks like a human head, and has 
the functions of vision, audition, inference, 
and behavior (see Figure 1).

The sensory modules receive audio 
and video signals from the environment, 
and perform source localization, signal 
enhancement, feature extraction, and user 
recognition in the forward ‘path’. In the 
backward path, top-down attention is per-
formed, greatly improving the recognition 
performance of real-world noisy speech 
and occluded patterns. The fusion of audio 
and visual signals for lip-reading is also 
influenced by this path.

The inference module has a recurrent 
architecture with internal states to imple-
ment human-like emotion and self-esteem. 
Also, we would like the Artificial Brain to 
eventually have the abilities to perform user 
modeling and active learning, as well as to 
be able to ask the right questions both to the 
right people and to other Artificial Brains.

The output module, in addition to the 
head motion, generates human-like be-
havior with synthesized speech and facial 
representation for ‘machine emotion’. It 
also provides computer-based services for 
users. 

The Artificial Brain may be trained 
to work on specific applications, and the 
OfficeMate is our choice of application 
test-bed. Similar to office secretaries, the Of-

Figure 1. An Artificial Brain with two eyes (cameras), two ears (microphones), and one mouth 
(speaker). It can interact with humans via intelligent functions such as sound localization, speech 
enhancement, user and emotion recognition with speech and face images, user modeling, and 
active learning of new things.
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EDITORIAL

What to feed the senses?
I’ve been thinking about getting information 
into the human brain. A feature for Wired 
magazine I finished recently discusses ways 
to feed in new (and potentially strange) kinds 
of information through the periphery: so, for 
instance, I got to try a ‘tongue display’ where 
images acquired by a camera on my forehead 
were fed into an array of pixels passing small 
currents through my tongue. I also got to 
use a haptic vest designed to help pilots un-
derstand their spatial orientation. I wanted 
to understand how much information the 
senses could handle (no point in supplying 
more), how much the brain could handle 
(without confusion), and how signals should 
be encoded.

I won’t go into the details: you can check 
out the article1 or look at my blog2  if you’re 
interested. But a number of interesting ques-
tions came up during my research: questions 
that the neuromorphic community may either 
be interested in or be able to help me with.

The first thing I found fascinating was 
how knowledge of sensory bandwidth—
which seems like it should be crucial to 
all engineering in this area—seemed very 
sketchy. For instance, one recent paper3 says 
the retina has about the same bandwidth as 
ethernet, 10Mb/s. But it doesn’t seem to 
relate the image coming in through the eye 
to that being passed through to the brain. 
In particular, nowhere in the paper does it 
suggest the retina might be doing some kind 
of compression, which seemed to me like an 
important issue (even if only to address and 
dismiss). Also, I practically begged a rearcher 
in tactile displays at the University of Madison 
(who worked on both tongue and fingertip 
displays) to tell me where I could get figures 
for tactile bandwidth. In his opinion, it was a 
meaningless question. I certainly couldn’t find 
any useful literature on the subject  myself: 
not for this or any of the other senses I was 
looking at.

The other main issue that started to in-
trigue me was attention. I know this makes me 
slow on the uptake, since this has been a ‘hot 
topic’ for a long time, but I had no particular 
reason to be deeply interested until now.

Specifically, I’ve become intrigued by 
two things: how attention is split up within 
a particular sense, and among the senses. My 
interest came from the fact that the tongue-
display system I used, which was intended to 
help people with macular degeneration,  felt 
very ‘visual’. My memories of using the device 
(blindfolded) are not of feeling sensations 
in the tongue, but instead of seeing a black-

and-white low-resolution world. I’m told that 
this ‘visual’ feeling is probably due to the fact 
that the information from the information is 
feeding into the visual part of the extrastriate 
cortex, the bit involved with mental imagery. 
Which begs a question: just how much im-
agery can a person handle, and does it matter 
where that imagery comes from?

An interesting development that relates 
a little to this is the work of some military 
researchers investigating the advisability of 
feeding different images—say a close-up of 
a sniper and a view of the whole building or 
scene—into left and right eyes. You can read 
the work yourself, but the bottom line is that it 
doesn’t work well: performance and reaction 
times drop because the brain doesn’t seem to 
be able to take it all in.4

There are many theories of attention, 
of course, but one presented by a colleague 
of mine here at Imperial College London 
recently seemed very persuasive.5 (Even 
though he used the ‘C’ word, consciousness, 
when he described it.) He presented new 
work neuromodelling something called the 
global workspace theory to show how dif-
ferent sensory inputs can compete with each 
other to produce psychological phenomena 
that we know take place, and which seems to 
have biological plausibility. Of course, it’s still 
far from answering the engineering question, 
‘Exactly how much can we usefully put in?’

One last thing I’ve been wondering about 
(to no avail so far), is whether the form of an 
incoming signal matters as much as its source. 
Specifically, if ‘visual’ information (images of 
remote objects, rather than those on the 2D 
periphery of the body) comes in through the 
tongue, how is the bit of the brain that deals 
with the tongue equipped to decipher it? Does 
it get help from some bit of the visual cortex 
(perhaps a higher-level part) or does it just 
figure out how to process images?

Any answers or leads would be much ap-
preciated: and I promise to share them!

Sunny Bains
Editor, The Neuromorphic Engineer
http://www.sunnybains.com
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Spiking neural networks (SNN)1-5 exhibit 
interesting properties that make them par-
ticularly suitable for applications that require 
fast and efficient computation and where 
the timing of input/output signals carries 
important information. However, the use 
of such networks in practical, goal-oriented 
applications has long been limited by the lack 
of appropriate supervised-learning methods. 
Recently, several approaches for learning 
in SNNs have been proposed.3 Here, we 
will focus on one called ReSuMe2,6 (remote 
supervised method) that corresponds to the 
Widrow-Hoff rule and is well known from 
traditional artificial neural networks. ReSuMe 
takes advantage of spike-based plasticity 
mechanisms similar to spike-timing depen-
dent plasticity (STDP).1,6 Its learning rule is 
defined by the equation below:

where Sd(t), Sin(t) and So(t) are the desired pre- 
and postsynaptic spike trains,1 respectively. 
The constant a represents the so-called non-
Hebbian contribution to the weight changes. 
The role of this parameter is to adjust the 
average strength of the synaptic inputs so as 
to impose on a neuron the desired level of 
activity (desired mean firing rate). The func-
tion W(s) is known as a learning window1 and, 
in ReSuMe, its shapes of are similar to those 
used in STDP models. The parameter s is a 
time delay between the correlated spikes. (For 
a detailed introduction to ReSuMe, please see 
Reference 6.)

It has been demonstrated that ReSuMe 
enables effective learning of complex tem-
poral and spatio-temporal spike patterns 
with a given accuracy (see Figure 1) and that 
the method enables us to impose desired 
input/output properties on the networks.2,10 
Contrary to most existing supervised learning 
methods in SNN, ReSuMe is independent 
of the spiking neuron models and can be 
effectively applied to the broad class of spik-
ing neurons.2,7 Convergence of the ReSuMe 
learning process has been formally proved for 
some classes of the learning scenarios.7

In Reference 10 we demonstrated the 
generalization properties of the spiking 
neurons trained with ReSuMe. It was also 
shown that SNNs are able to perform func-
tion approximation tasks. Moreover, we 
demonstrated that, by appropriately setting 
the learning rule parameters, networks can be 
trained to reproduce desired spiking patterns 
Sd(t) with a controllable time lag ∆t, such 
that the reproduced signal So(t) ≅ Sd(t - ∆t) 

(unpublished results). This property has very 
important outcomes for the possible applica-
tions of ReSuMe: e.g. in prediction tasks, 
where SNN-based adaptive models could 
predict the behaviour of reference objects in 
on-line mode.

Especially promising applications of SNN 
are in neuroprostheses for human patients 
with the dysfunctions of the visual, auditory, 
or neuro-muscular systems. Our initial simula-
tions in this area point out the suitability of 
ReSuMe as a training method for SNN-based 
neurocontrollers in movement generation and 
control tasks.8,9,11

Real-life applications of SNN require effi-
cient hardware implementations of the spiking 
models and the learning methods. Recently, 
ReSuMe was tested on an FPGA platform:4 
the implemented system demonstrated fast 
learning convergence and the stability of the 
optimal solutions obtained. Due to its very fast 
processing ability, the system is able to meet 
the time restrictions of many real-time tasks.

Filip Ponulak
Inst. of Control and Information Eng.
Posnan University of Technology
Posnan, Poland
E-mail: Filip.Ponulak@put.poznan.pl
http://d1.cie.put.poznan.pl/~fp
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Figure 1. ReSuMe is used to train a spiking 
neural network to store and recall an exemplary 
target spatio-temporal pattern of spikes (gray bars). 
The spike-trains produced at the network outputs 
(black bars) before the training (A) and after 5, 
10 or 15 learning epochs (B,C,D, respectively) are 
shown. After 15 learning epochs the target pattern 
is almost perfectly reproduced, with the correlation 
equal to 0.998.
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Insperata accidunt magis saepe quam quae 
speres, i.e. things you do not expect happen 
more often than things you do expect, warns 
Plautus (circa 200 BC). Most readers would 
agree with Plautus that surprising sensory 
input data could be important since they 
could represent a new danger or new op-
portunity. A hypothesized cognitive process 
involved in the processing of such inputs is 
illustrated in Figure 1. 

In machine recognition, low-prob-
ability items are unlikely to be recognized. 
For example, in the automatic recognition 
of speech (ASR), the linguistic message 
in speech data X is coded in a sequence of 
speech sounds (phonemes) Q. Substrings 
of phonemes represent words, sequences 
of words form phrases. A typical ASR at-

Dealing with unexpected words 
tempts to find the linguistic message in the 
phrase. This process relies heavily on prior 
knowledge in text-derived language model 
and pronunciation lexicon. Unexpected lexi-
cal items (words) in the phrase are typically 
replaced by acoustically acceptable in-vo-
cabulary items.1

Our laboratory is working on identifi-
cation and description of low-probability 
words as a part of the large multinational DI-
RAC project (Detection and Identification of 
Rare Audio-Visual Cues), recently awarded 
by the European Commission. Principles of 
our approach are briefly described below.

To emulate the cognitive process shown 
in Figure 1, the contemporary ASR could 
provide the predictive information stream. 
Next we need to estimate similar information 

without the heavy use of prior knowledge. 
For the estimation of context-constrained 
and context-unconstrained phoneme poste-
rior probabilities, we have used a continuous 
digit recognizer based on a hybrid Hidden-
Markov-Model Neural-Network (HMM-
NN) technique,1 shown schematically in 
Figure 2. First, the context-unconstrained 
phoneme probabilities are estimated. These 
are subsequently used in the search for the 
most likely stochastic model of the input 
utterance. A by-product of this search is a 
number of context-constrained phoneme 
probabilities.2

The basic principles of deriving the con-
text-unconstrained posterior probabilities of 
phonemes are illustrated in Figures 3 and 
4. A feed-forward artificial neural network 
is trained on phoneme-labelled speech 
data and estimates unconstrained posterior 
probability density function pi(Q|X).3 This 
uses as an input a segment xi of the data X 
that carries the local information about the 
identity of the underlying phoneme at the 
instant i. This segment is projected on 448 
time-spectral basis. As seen in the middle 
part of Figure 5, the estimate from the NN 
can be different from the estimate from the 
context-constrained stream since it is not 
dependent on the constraints L.

The context-unconstrained phoneme 
probabilities can be used in a search for the 
most likely Hidden Markov Model (HMM) 
sequence that could have produced the 
given speech phrase. As a side product, the 
HMM can also yield, for any given instant 
i of the message, its estimates of posterior 
probabilities of the hypothesized phonemes 
pi(Q|X,L) ‘corrected’ by a set of constraints 
L implied by the training-speech data, model 
architecture, pronunciation lexicon, and the 
applied language model.4 When it encoun-
ters an unknown item in the phoneme string 
(e.g. the word ‘three’ in Figure 5), it assumes 
it is one of the well known items. Note that 
these ‘in context’ posterior probabilities, 
even when wrong, are estimated with high 
confidence.

An example of a typical result4 is shown 
in Figure 5. As seen in the lower part of 
the figure, an inconsistency between these 
two information streams could indicate an 
unexpected out-of-vocabulary word.

Being able to identify which words are 
not in the lexicon of the recognizer, and 
being able to provide an estimate of their 
pronunciation, may allow for inclusion of 

Figure 1. Hypothesized process for the discovery of unexpected items. The sensory input triggers a 
predictive process in the upper path that uses top-down knowledge from the past experience and 
generates predicted components of the scene. In parallel, the scene components are also estimated 
directly (i.e. without the use of the top-down knowledge) from the input. A comparison between 
the two sets of components may indicate an unexpected item.

Figure 2. Discovery of out-of-vocabulary words using the hybrid HMM-NN ASR system, in which 
the out-of-context posterior probabilities estimated by the artificial neural network (ANN) are 
also directly used in the constrained search for the best model sequence.2 Hermansky, continued p.   �
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Figure 3. Posterior probabilities of phonemes estimated by an HMM-based system (the 
upper part of the Figure), and by ANN (the middle part of the Figure). In this example, the 
HMM model inconsistency was introduced by removing the word three from the recognizer 
vocabulary. The correct phoneme sequence for the word three is misrepresented in the HMM-
derived posteriogram (replaced by a sequence /z/iy//r//oh/ of the in-vocabulary word zero). The 
ANN-derived probabilities indicate in this case the correct sequence /th//r//iy/ for the out-of-
vocabulary word three. Comparison of the respective posterior probability density functions by 
evaluating their relative entropy (also known as KL divergence): its running average, evaluated 
over 100 ms time intervals, is shown in the lower part of the figure. This indicates HMM model 
inconsistency in the neighbourhood of the out-of-vocabulary word there (see Reference 4 for 
more details).

these new words in the pronunciation dic-
tionary, thus leading to an ASR system that 
would be able to improve its performance as 
being it is used over time, i.e. that is able to 
learn. However, the inconsistency between 
in-context and out-of-context probability 
streams need not indicate the presence of 
unexpected lexical item but could indicate 
other inadequacies of the model. Further, 
this inconsistency might also indicate cor-
rupted input data if the in-context probabil-
ity estimation using the prior L yields more 
reliable estimate than the unconstrained 
out-of-context stream. Thus, providing a 
measure of confidence in the estimates from 
both streams would be desirable when cor-
rupted input is a possibility.

Hynek Hermansky
IDIAP Research Institute
Swiss Federal Institute of Technology
Lausanne, Switzerland
Email: hynek.hermansky@idiap.ch
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Figure 4. Illustration of the technique for 
obtaining a reliable estimate of posterior 
probability density functions pi(Q|X) without 
the use of top-down constraints L. The short-
term critical-band spectrogram (left part of 
the figure) is derived by weighted summation 
of appropriate components of the short-term 
spectrum of speech. A segment of this spectrogram 
is projected on 448 different time-frequency 
bases (shown in Figure 3), centred at the time 
instant i, yielding a 448 point vector that forms 
the input to the MLP neural net, trained 
on about 2 hours of hand-labelled telephone-
quality speech to estimate a vector of posterior 
probabilities pi(Q|X). A set of pi(Q|X) for all 
time instants forms the so-called posteriogram, 
shown for the utterance one-one-three-five-eight 
in the lower part of the figure. Higher posterior 
probabilities are indicated by warmer colors (see 
Reference 5 for more details).

Unexpected words, continued from p. �

Hermansky, continued p.   10
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There is an increasing demand for low-
power, low-cost, real-time vision systems 
able to perform a reliable analysis of a visual 
scene: especially in environments where the 
lighting is not controlled. In the automotive 
industry, for instance, there are many po-
tential applications including lane-departure 
warnings, seat-occupancy detection, blind-
angle monitoring and pedestrian detection. 
But there are multiple constraints involved 
in embedding a vision system in a vehicle. 
First, the automotive industry has stringent 
requirements in terms of cost. Second, 
a vision system in a moving vehicle will 
experience sudden changes in illumination 

level and wide intra-scene dynamic range: 
this imposes severe constraints on the sen-
sor characteristics and the optical design. 
Finally, the diversity of environments and 
situations, and the need for a fast reaction 
time make algorithm development a chal-
lenging part of the work.

The approach we have taken to solv-
ing these multiple requirements consists 
in moving part of the image processing to 
the sensor itself. This allows the extraction 
of robust image features independent of the 
illumination level and variation, and limits 
data transmission to the features required 
to perform a given task. The vision sensors 

developed at CSEM1,2 perform the compu-
tation of the contrast magnitude and direc-
tion of local image features at the pixel level 
by taking spatial derivatives at each pixel. 
These derivatives are multiplied by a global 
steering function varying in time, resulting 
in a sinusoidal signal whose amplitude and 
phase represent, respectively, the contrast 
magnitude and direction.

The contrast representation derived in 
the vision sensor is equivalent to normaliz-
ing the spatial gradient magnitude with the 
local intensity. Unlike the spatial gradient, 
the contrast representation does not depend 
on illumination strength, thus introducing 
considerable advantages for the interpreta-
tion of scenes. Furthermore, information 
is dispatched by decreasing order of con-
trast magnitude, thus prioritizing pixels 
where contrast magnitude is strong: these 
are usually sparse in natural images.3 This 
mechanism allows reducing the amount of 
data dispatched by the sensor. Figure 1 il-
lustrates the high intra-scene dynamic range 
of the vision sensor and its ability to discard 
illumination. 

A compact and low-power platform, 
called Devise, has been developed to dem-
onstrate the efficiency of this approach 
to implement low-power real-time vision 
systems. The platform, shown on Figure 2, 
embeds a vision sensor,2 a BlackFin BF 533 
processor, memory, and communication in-
terfaces. An Ethernet interface enables easy 
connection to a PC, allowing visualization 
of raw data in real time and easing the devel-
opment and debugging of new algorithms. 
Once an application has been developed 
and migrated to the BlackFin processor, 
a low-data-rate radio-frequency link is 
available that can be used, for instance, to 
communicate between different nodes in a 
network of such platforms.

In the last few years, we have made a 
continuing effort to develop software that 
exploits the contrast information delivered 
by our vision sensors to analyze visual scenes 
in natural environments. Development has 
been focused in two areas: automotive, as 
mentioned previously, and surveillance. 
The main function of our ‘driver assistant’ 
algorithm, for instance, is to detect the road 
markings so that the position of the vehicle 
on the road is known at all times and the 
driver can be warned if they leave their lane 
unintentionally. Each road marking—con-

Embedded vision system for real-time 
applications

Figure 1. Shown is the gray-level image (top left) and contrast magnitude representation (top 
right) close to a tunnel exit. Middle left is the contrast magnitude representation with a transition 
between a sunny area and a shadowed area across the pedestrian crossway. Middle right shows the 
contrast direction representation on a road at night, with cars coming in the opposite direction. 
Here the representation is color-encoded. The bottom row shows the contrast magnitude with the 
sun entering in the field of view. Ruëdi and Grenet, continued p. 7
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sisting of two edges with high contrast 
magnitude and opposite contrast direc-
tions—is detected and tracked in a restricted 
area that is continuously adapted to the last 
detected position. Continuous and dashed 
markings are differentiated. The vanishing 
point is extracted, the variations of which 
give useful gyroscopic information (tilt and 
yaw angles). A Kalman filter supervises the 
system and gives robustness to the detec-
tion (e.g. when markings are temporarily 
missing). The system also estimates the 
illumination level and road curvature by 
fitting the markings points with a clothoid 
equation, allowing it to appropriately con-
trol the headlights.

This algorithm, implemented in the 
BlackFin processor, works robustly at 25 
frames per second in varying conditions 
such as night, sun in the field of view, and 
roads with poor quality markings. For 
demonstration purposes, detection results 
(mark position and type, road curvature, 
light level, etc.) are sent via the low-data-rate 
radio-frequency link to a cellular phone that 
displays a synthetic view of the road  in real 
time (see Figure 3).

This work demonstrates that moving 
some of the image processing to the sensor 
itself is a solution to implement real-time 
low-power and low-cost vision systems 
able to function robustly in uncontrolled 
environments.

Pierre-François Rüedi and Eric Grenet
CSEM S.A.
Neuchâtel, Switzerland
E-mail: pfr@csem.ch, egt@csem.ch
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Figure 2. Shown left are the platform components: sensor board, processing board, battery, optic, and case. Right, 
the vision system can be seen mounted in a car behind the rear-view mirror for live lane-departure warnings.

Figure3. Various road situations and their related symbolic representation. Shown are single-lane (top left) and a 
multi-lane curves (top middle) by day, a lane departure in a tunnel (bottom middle) and on a countryside road 
with single marking by night (bottom left). To the right is a real-time display and a warning on a cell phone.

Embedded vision, continued from p. �
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The field of automatic speech recognition 
(ASR) has advanced far enough in the past 
decade to produce numerous commercial ap-
plications such as the speech-driven telephone 
customer service menus now deployed by 
many companies. Unfortunately, these and 
other state-of-the-art ASR systems still pale 
in comparison to human performance, par-
ticularly in the presence of noise. Researchers 
have long been aware of this discrepancy in 
performance and have often turned to biol-
ogy seeking clues to the robustness of the 
human auditory system. As a matter of fact, 
the most commonly employed features for 
ASR applications are still the Mel frequency 
cepstral coefficients (MFCC), which mimic the 
logarithmic distribution of channels through-
out the frequency of hearing as observed in 
the cochlea.

Nonetheless, today’s ASR systems are 
designed with a window-based mindset us-
ing Hidden Markov Models (HMMs) and 
have little resemblance to neurobiological 
computation. As is well known, neurons in 
the brain use all-or-nothing action potentials 
to communicate timing information. These 
spike trains code sensory inputs and all levels 
of processing throughout the brain. Rather 
than being artifacts of biology, we believe 
that spike trains provide a key to the wonder-
ful noise robustness of the auditory system 
and can be exploited in man-made machine 
recognition systems. 

Recently, we proposed a spike-based clas-
sification scheme for simple acoustic signals 
that exploits the phase synchrony between the 
parallel streams of spike trains produced by 
the cochlea followed by a time-to-first-spike 

rank-order decoder for classification.1 A more 
recent version of our system replaces the rank-
order decoder with a spiking neural network 
for improved classification. Comparisons 
with a typical ASR engine show improved 
performance under the presence of noise. 
According to the results, spike firing times 
reveal a phase synchrony among tonotopically 
distributed auditory nerve fibers, which varies 
with the spectral properties of the input signal. 
Other researchers have proposed spike-based 
ASR systems but none have taken advantage 
of phase synchrony coding. We found out 
that the degree of such synchrony (DoS) 
constitutes a highly noise robust feature set for 
classification purposes by having little variation 
in response to changing noise levels. 

Can spike-based speech recognition systems 
outperform conventional approaches?
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Figure 1. Log-magnitude spectral envelope for /uh/ and the corresponding degree of phase synchrony for two sets of 
hair cells centered at 437Hz and 519Hz (computed for a noisy utterance with 5dB SNR).
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Spike-based classification architecture
The proposed system is composed of three 
main blocks: speech-to-spike conversion, 
feature extraction via phase synchrony cod-
ing, and classification via liquid state machine 
(LSM). For speech-to-spike conversion, we 
use an up-to-date cochlear simulation employ-
ing an improved inner hair cell model with 
auditory nonlinearities such as adaptation and 
temporal dynamics.2 Human empirical data is 
used for various cochlear parameters, such as 
the distribution of the channels throughout 
the frequency of hearing.

For phase-synchrony coding, one has 
to look at the inter-spike time interval (ISI) 
histogram for each channel, which is defined 
as the total number of spikes falling within 
specified bins of time intervals. Our defini-
tion of the DoS for a particular channel is the 
magnitude of the first non-zero peak in the 
spectrum of its ISI histogram. As shown in 
Figure 1, even with a very noisy vowel input 
signal, the fibers with characteristic frequencies 
(437Hz) close to the first peak (426Hz) in the 
vowel’s log-magnitude spectral plot are still 
able to phase lock very close to that particular 
frequency. They also have a higher DoS than 
other channels, such as the one shown in the 
bottom plot with a characteristic frequency 
(519Hz) further from the first formant peak.

Finally, for classification, the system 
employs an LSM with a randomly connected 
recurrent neural circuit.3 The idea is to map 
the input vector to a higher dimension where 
the distance metric between prospective 
classes is larger. For our system, the input 
vector—which is comprised of the degrees of 
synchrony for each channel—is passed on to 
the neural circuit as the membrane potentials 
of input neurons that make dynamic spiking 
synapses with the circuit using spike-timing 
dependent plasticity. The state of the circuit is 
low-pass filtered and sampled to be associated 
with a target class (different types of vowels) by 
the help of a trainable readout function. Figure 
2 shows the overall system design, as well as 
some of the important system parameters.

Results and discussion
We tested the algorithm on a noisy, multi-
speaker, multi-gender vowel dataset. We 
compared the algorithm to a typical speech 
recognition engine employing the well-known 
MFCCs and an HMM. The percentage correct 

Figure 2. The overall spike-based classification. The degree of synchrony is extracted from spike 
trains generated in each individual cochlear channel. This feature set is then used with an LSM 
with supervised learning for classification.

                          SNR (dB) 
 
System 

25 10 5 

MFCC - HMM  93% 86% 77% 
Spike-based 92% 91% 89% 

 

Table 1.

Uysal, continued p.  10
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results are shown in Table 1.
At high signal-to-noise ratio (SNR) 

values, both systems perform comparably 
well, but the proposed system using phase 
synchrony coding is able to outperform the 
MFCC-HMM algorithm by 12% at 5dB 
SNR. In regards to the question raised in the 
title, though applied to a simplified domain, 
spike-based recognition is clearly more noise 
robust when compared to a conventional ASR 
system. This performance is mainly due to the 
phase synchrony maintaining capabilities of 

tonotopic neuron populations even under the 
presence of high amounts of noise.

Future work involves extrapolation of 
these findings to more complex signals and 
multi-syllable words by the help of relational 
networks as observed in the cortex.

Ismail Uysal, Harsha Sathyendra, and
John G. Harris
Computational NeuroEngineering Lab
University of Florida
Gainesville, FL, USA
E-mail: ismail@cnel.ufl.edu
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Figure 5. Shown are the time-frequency bases that 
attempt to emulate some very basic properties of 
auditory cortical receptive fields (e.g. Shamma). 
They are formed as outer products of first 
and second derivatives of truncated Gaussian 
functions of eight different widths in the time 
domain, and by summation and differentiation 
over three frequency components (three critical 
bands), centred at 14 different frequencies in 
the frequency domain (see Reference 4 for more 
details). 
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Ever wondered why progress seems slow in 
building visually guided autonomous agents 
that perceive and intelligently interact with 
their environment? Well, one reason may 
be that our understanding of perception 
and the underlining computations involved 
is incomplete or just plain wrong. This 
new book by Alan Stocker provides n 
unconventional and fresh perspectives on 
how to understand perception and build 
simple artificial perceptual systems using 
analog VLSI (very large silicon integra-
tion) circuits. Focusing on the example of 
visual motion perception, it demonstrates 
how brain-style computation combined 
with CMOS (complimentary metal-oxide 
semiconductor technology can lead to ef-
ficient and robust ‘neuromorphic’ circuits 
to solve the hard optimization problems 
encountered in perception. 

One key factor underlying the success 
of human visual perception lies in its use of 
constraint satisfaction. That is, the brain pre-
sumably applies mechanisms that combine 
the aspects of its visual input that cohere 
and segments out those aspects that do not. 
These mechanisms bootstrap globally coher-
ent (optimal) solutions by rapidly satisfying 
local consistency constraints. Consistency 
depends on relative computations such as 
non-linear comparison, interpolation and 
error feedback, rather than absolute preci-
sion. And this style of computation is very 
suitable for implementation in analog VLSI 
circuits, as Dr. Stocker demonstrates.

What makes this book special is that it 
not only presents practical implementations 
of constraint satisfaction networks for visual 
motion perception, but it also demonstrates 
a series of useful and impressive aVLSI 
circuits for solving visual motion problems 
such as estimating 2D optical flow, motion 
segmentation, and motion selection. And 
these chips are useful for robotic applica-
tions. Their true strength lies, however, 
in their broad and principled theoretical 
foundations.

The book begins with some ecological 
considerations about why and how visual 
motion is perceived from changes in the 
visual input. It then goes on to illustrate the 
basic computational challenges, discusses 

possible solutions, and finally concludes in 
proposing a general computational architec-
ture for visual motion perception. The key 
concept is that the perceptual process is an 
optimization problem of finding the visual 
motion estimate that is maximally consis-
tent with the visual information and the 
system’s expectations. Chapter three makes 
the connection to associative memory and 
Hopfield networks as examples of network 
architectures that compute optimal solu-
tions. It demonstrates how simple problems 
(e.g. the winner-take-all operation) can be 
formulated as local constraints that together 
define the optimal solution. The chapter also 
shows how to derive appropriate network 
architectures that find it.

Chapter four then formulates optical-
flow estimation as a constraint satisfac-
tion problem, deriving the basic network 
architecture that is the basis for all further 
networks discussed in the book. It draws 
the connection between the formulated 
constraint solving problem and statistically 
optimal motion estimation as described 
with Bayesian frameworks, showing that 
prior information is essential in achieving 
a robust design. Furthermore, extensions 
of the basic network allow even more 
sophisticated processing such as motion 
segmentation or motion selection for which 
the network selects regions in its visual field 
that match a particular motion and size.

Chapters five to seven extensively deal 
with aVLSI implementations of the pro-
posed network architectures, providing de-
tailed schematics and measurements of the 
fabricated chips. The effects of the inevitable 
non-linearities and mismatch are discussed 
in detail, showing that clever analog designs 
can take advantage of nonlinearities to im-
prove robustness and performance.

The book concludes with an interesting 
final chapter with a comparison to primate 
visual motion perception systems. It also 
presents data of head-to-head comparison 
between humans and the aVLSI chips per-
forming the same perceptual tasks. The dy-
namics and steady-state behavior similarities 
are quite surprising, leading the author to 
conclude that both systems must optimize 
a similar set of constraints. The future will 

tell if this is true or not.
The broad approach of this book 

certainly reflects the background and the 
interests of the author. He is an expert 
aVLSI circuit designer, a computational 
modeler of the visual system, and a psy-
chophysical experimentalist working on 
human motion perception. I highly rec-
ommend this book not only to those who 
are particularly interested in aVLSI visual 
motion circuits, but to anyone interested in 
the novel, neuromorphic, style of compu-
tation. The philosophy and methodology 
of the approach seem general enough and 
applicable to other perceptual tasks, such 
as depth perception and texture segmenta-
tion. Furthermore, the analog VLSI imple-
mentation of the presented computational 
networks becomes particularly attractive in 
light of recent technological developments 
in three- dimensional integrated circuits. 
Three-dimensional integration permits lo-
cal vertical connections between different 
chips, physically stacked as a ‘layer cake’. 
Recurrent analog networks can naturally 
be implemented as multi-layered parallel 
computational blocks of tremendous capa-
bilities, without the need for sophisticated 
chip-to-chip protocols.
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Johns Hopkins University
Baltimore, MD, USA
Email: retienne@jhu.edu
URL: http://etienne.ece.jhu.edu/
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ficeMate will help users perform tasks such 
as scheduling, making telephone calls, data 
searching, and document preparation. 

The auditory processor
The auditory module consists of feature-
extraction, binaural and attention models, 
all inspired by the human auditory pathway. 
The feature extraction model is based on a 
cochlear filter bank, zero-crossing detector, 
and nonlinearity. The filter bank consists 
of many bandpass filters, of which center 
frequencies are distributed linearly in terms 
of the logarithmic scale. The zero-crossing 
time intervals are used to estimate robust 
frequency characteristics in noisy speeches. 
The logarithmic nonlinearity provides wide 
dynamic range and robustness to additive 
noise, while time-frequency masking may 
suppress weaker signals that are likely to 
be noise. 

The binaural model estimates interaural 
time delay based on zero-crossing times for 
noise robustness. Also, the binaural process-
ing algorithm has been extended to incor-
porate multiple sound sources and room 
acoustics with multipath reverberation. The 
convolutive ICA algorithm we developed 
successfully separates multiple speeches 

using linear or cochlear filterbanks.1

A simple but efficient top-down at-
tention model has been developed with a 
multilayer Perceptron classifier for pattern 
recognition systems. In this top-down at-
tention model, an attention cue may be 
generated either from the classified output 
or from an external source. The attended 
output class estimates an attended input 
pattern based on the top-down attention. It 
may be done by adjusting the attention gain 
coefficients for each input neuron using an 
error backpropagation algorithm. For unat-
tended input features the attention gain may 
become very small, while those of attended 
features remains close to 1. Once a pattern 
is classified, attention may shift to find the 
remaining patterns.2

To provide the intensive computing 
power we developed a special chip for 
real-time applications. The system-on-a-
chip consists of circuit blocks for analog to 
digital conversion, nonlinear speech-feature 
extraction, a programmable processor for 
the recognition system, and digital to ana-
log conversion. Also, the extended binaural 
processing model has been implemented 
using field-programmable gate arrays and 
tested with a board with two microphones 
and five speakers (see Figure 2). The two 

Artificial Brain, continued from p. �
microphones receive six audio signals, and 
the chip and board demonstrated great 
signal enhancement: the final signal-to-noise 
ratio was about 19dB, and the  enhance-
ment 18dB.3

The future
Intelligent machines will help humans as 
friends and family members in the early 
21st century, and provide services for the 
prosperity of human beings. Intelligence to 
machines, and freedom to mankind!

Soo-Young Lee
Director, Brain Science Research Center
Dept. of BioSystems and
Dept. of Elec. Eng. and Comp. Sci.
Korea Advanced Inst. of Sci. and Tech.
Daejeon, Korea
E-mail: sylee@kaist.ac.kr
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Figure 2. Demonstration 
system for blind signal 
processing and adaptive 
noise cancellation. Two 
microphones received six 
signals: one human speech, 
one car noise from the 
right speaker, and four 
background music signals 
from the remaining four 
speakers.


