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Although biped robots have been devel-
oped using various technologies, they are 
still well outperformed in some important 
aspects—such as speed and robustness—by 
their natural counterparts, humans. In hu-
man and animal walking control, stable 
gaits emerge from the global entrainment 
between the neuro-musculo-skeletal system 
and the environment.1 Moreover, in human 
and animal locomotion, the muscle is more 
than a simple actuator. Some special prop-
erties of muscles—the inertia of a limb or 
the elasticity of a muscle, for example—can 
tremendously simplify the control demands 
of the nervous system for walking.

Here, we present our design of, and 
experiments with, a planar biped robot and 
its reflexive neuromuscular control network. 
The network is composed of biologi-
cally plausible model neurons and a simple 
muscle model that is simulated with a con-
trol algorithm implemented on DC-geared 
motors. In contrast to other walking robots, 

our design has no 
central pattern gen-
erator in the form of 
a neuronal oscillator. 
Rhythmic patterns 
are generated by the 
whole system using 
the electrical and me-
chanical properties 
of the motors, the 
limbs, and the envi-
ronment. In the ex-
periments, our biped 
robot attained a rela-
tive walking speed 
faster than any other 
current biped robot, 
and comparable to that of humans.

The robot design
RunBot is 23cm high, foot to hip-joint 
axis. It has four joints: left hip, right hip, 
left knee, and right knee. Each is driven by 

a modified RC servo motor. 
We constrain the robot to the 
sagittal plane using a 1m-long 
boom. The robot is attached 
to the boom via a freely-rotat-
ing joint, and the boom to the 
central column by a universal 
joint. This boom structure 
has negligible influence on 
the dynamics of the robot in 
the sagittal plane, allowing it 
to freely trip or fall. The me-
chanical design of our robot 
incorporates small curved feet 
and a forward-located mass 
center, both of which facili-
tate its fast-walking speed. It 
also exploits natural dynam-
ics, such as inertia of the 
limbs, friction of the motors, 
and gravity.

The design of the neuromuscular con-
troller
The neuronal controller follows a hierarchi-
cal structure (see Figure 1). The bottom 
level is the reflex circuit local to the joints, 
including motor-neurons and angle sen-
sor neurons involved in the joint reflexes. 
The top level is a distributed neural net-
work consisting of hip stretch receptors 
and ground contact sensor neurons, that 
modulate the local reflexes of the bottom 
level. The effects of these sensor signals in 
generating a walking gait are illustrated in 
Figure 2. Neurons are modeled as non-spik-
ing neurons simulated on a Linux PC and 
communicated to the robot via a DA/AD 
(digital-analog/analog-digital) board.2 

We use a linear viscous elastic muscle 
model that is composed of a spring in par-
allel with a viscous damper, and is directly 
controlled by the motor-neuron output.3 
Each joint has an antagonistic muscle pair 
of flexor and extensor, which are activated 
by the extensor and flexor motor-neuron, 
respectively (see Figure 1). 

Figure 2. A series of frames of one walking step. At the time of frame 3, 
the stretch receptor (Anterior Extreme Angle signal, AEA) of the swing 
leg is activated, which triggers the extensor of the knee joint in this leg. 
At the time of frame 7, the swing leg begins to touch the ground. This 
ground contact signal triggers the hip extensor and knee flexor of the 
stance leg, as well as the hip flexor and knee extensor of the swing leg. 
Thus, the swing and stance legs swap their roles thereafter.

Figure 1. The circuit of the neuromuscular controller. Only the 
muscle pair of one joint is illustrated. Tao, continued p. 4
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What is ‘intelligence’ and, for that matter, 
what problems might arise in building an 
intelligent machine? Are human brains, 
with their greatly expanded neocortex, the 
only currently-existing intelligent devices? 
Apart from some unconvincing computer 
programs, the only known intelligent de-
vices seem to be animals: particularly birds, 
and especially mammals. There is, however, 
at least one other clear example of natural 
‘intelligence’: all living organisms, notori-
ously, appear to be intelligently designed, 
even though this appearance is achieved 
by selective amplification of molecular ac-
cidents. This form of natural intelligence 
(i.e. the ‘Darwinian algorithm’ comprised 
of iterative replication/mutation/transcrip-
tion/translation/selection steps) is the only 
other successful exemplar of ‘intelligence’ 
we have identified to date. It is also a good 
source of clues to help us navigate the neo-
cortical labyrinth.

A good place to start our inquiry is to 
ask what is going on inside the skull. (See 
Figure 1) There are two basic processes: 
the first is a rapid (millisecond) ‘integration’ 
step, in which synaptically weighted voltages 
are collected over the surface of a neuron, 
combined (possibly in a nonlinear way), and 

sent via more synapses to other neurons. 
There is also a slower ‘learning’ process that 
uses the rapid signals to modify the weights 
such that performance improves. Learning is 
done by adjusting the strength of individual 
synapses according to the voltage across the 
synapse (Hebb’s Rule). The power of the 
learned world model will reflect the extent 
to which the synapses can individually be set 
(much as the power of a digital computer re-
flects the number of transistors and memory 
locations that can be individually—and suf-
ficiently rapidly—controlled. 

Intelligence boils down to numbers: 
the combinatorial potential vastness of the 
world should be matched by a correspond-
ing potential combinatorial vastness of the 
brain that models it, together with precise 
rules (such as Hebb’s) for selecting useful 
combinations. Integration requires volt-
age spread, but accurate learning requires 
chemical localization: the incompatibility of 
these requirements limits intelligence. 

The neocortex: looking inside the box 
An enormous amount has been learned 
about the neocortex. First, it seems to have 
a similar microstructure in different animals 
and different parts of the same animal, from 
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Figure 1. The left hand picture illustrates the interaction between 
an animal’s brain (B) and its world (W). The brain’s input-output 
relation reflects its synaptic weights, which depend on the history of 
ancestors (gray zone, ‘genes’) and, especially in complex animals, 
on the history of the animal itself (‘learning’). The right hand 
picture shows the two main components of a mammal’s brain; the 
subcortical structures (which learn pairwise correlations), and the 
neocortex (which learns higher order correlations). The neocortex 
relies particularly heavily on learning, and provides corrections to 
subcortical computations. Adams, continued p. 9

subcortical
structures

monotremes to Mozart. 
The neocortex characteris-
tically has six layers. Neo-
cortical input arrives, from 
a central and mysterious 
lump of neurons called 
the thalamus (‘layer 0’), 
in layer 4. The set of input 
firings, filtered through 
the 0/4 synapses, initial-
izes a representation that 
then rapidly evolves as the 
environment changes and 
as inhibition and recurrent 
excitation kick in. This 
recurrent process may be 
thought of as providing 
a statistically optimal es-
timate of what the initial 
pattern would have been 
if there were no noise in 
the neural circuitry.1 Thus, 
the core computation is, 
as originally surmised by 
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The notion of a ‘frame’ of video data has 
become so embedded in computer vision 
that it is taken for granted. This is natural, 
given that the only available input devices 
have always been frame-based—from drum 
scanners and videcon tubes to CCDs (charge-
coupled devices) and CMOS (complimentary 
metal-oxide semiconductor) imagers. Also, 
frame-based imagers have undeniable ad-
vantages: they use small pixels, are easy to 
understand, and are compatible with standard 
output devices. Are frames the way to go for 
vision problems, or are they just a holdover 
from video? 

Frames carry a heavy penalty: frame-based 
vision is centered on a stroboscopic series of 
snapshots taken at a constant rate. The pixels 
are sampled redundantly, over and over, even 
if they have nothing novel to say. Bandwidth 
and dynamic range are limited by the identical 
sampling rate and integration time. When a 
human composes a static picture, these may 
not be terrible disadvantages, but for machine 
vision in unsupervised environments, the 
disadvantages of limited dynamic range and 
sampling rate can be extremely important.

Over the past decade, a handful of devel-
opers have created novel vision sensor devices 
that adopt the neuromorphic architecture of 
redundancy-reduced address-event output. 
(We don’t have room here to discuss imaging 
devices that don’t reduce redundancy.) Some 
of these devices abandon frames altogether. 
Starting from Mahowald’s address-event 
representation (AER) silicon retina,1 these 
new devices offer the promise of more ef-
fective ways of tackling real-world vision 
problems.

Mahowald’s AER retina was a demon-
stration of a concept device that was unusable 
for any real world task—in fact it was neces-
sary to show it something like a flashing LED 
to see any sensible response. The University of 
Pennsylvania’s silicon retina2 marked a major 
advance by incorporating both sustained and 
transient types of cells with adaptive spatial 
and temporal filtering, meaning that the 
space and time constants vary according to 
the illumination level and spatio-temporal 
contrast. This functionality is achieved by 
the use of tightly coupled log-domain current 
mode circuits. Of all devices built so far, this 
one comes closest to capturing key adaptive 
features of biological retinas. However, the 
price for this functionality is mismatch: the 
DC firing rates vary by a factor of 1,000, 
and one-half of the pixels do not spike at all 
for moderate contrast. In addition, the use 
of a passive phototransistor current-gain 

Freeing vision from frames

mechanism limits the dynamic range to 
approximately three decades and leads to a 
relatively small bandwidth.

The Swiss Center for Electronics and 
Microtechnology (CSEM) was next to weigh 
in with two devices.3 Both of these—the 
first based on current mode, and the second 
on voltage mode with greatly improved 
performance—relax the notion of a frame 
by outputting events after a global reset in 
the order of spatial contrast, each followed 
by another event that encodes contour 
orientation. These chips also are the first to 
successfully implement steerable filters. They 
are presently in commercial development for 
jobs such as lane find-
ing, and microlenses 
are being incorporated 
to increase the photon 
catch. 

The rate of change 
of the contrast thresh-
old is varied dynamical-
ly after reset to control 
the bus occupation, and 
the device has a very 
small 2% contrast mis-
match and a large six-
decade dynamic range. 
The CSEM pixel also 
clamps the photodi-
ode reverse voltage at a 
small value, potentially 
leading to a substantial 
reduction in dark cur-
rent. Its main draw-
backs are that it doesn’t 
reduce temporal redun-
dancy (do temporal de-

rivatives, for example), and 
is thus limited in temporal 
resolution to the frame 
rate. Power consumption 
at 300mW is about 10× 
the other devices discussed 
here.

Johns Hopkins Univer-
sity entered the competition 
in an ISSCC 2005 paper4 
with their temporal-differ-
ence-event imager, which 
modifies the traditional 
active-pixel-sensor (APS) 
CMOS imager to make a 
pixel that can detect chang-
es in illumination. This 
synchronous device can 
store the addresses of pix-
els that signal change in a 

FIFO (first in, first out), making a new type 
of clocked AER sensor. Its big advantage 
is that it offers a normal APS mode with 
relatively small pixels: disadvantages are the 
limited two decade dynamic range and the 
fixed illumination-change threshold, mean-
ing that the single threshold for change is 
useful only when the scene illumination is 
very uniform.

In our own work reported at ISSCC 
2006,5 we built a transient AER vision sen-
sor that responds purely to relative changes 
in intensity, loosely modeling the transient 

Figure 2. An Edmund density target with contrast steps of 10% was 
moved in front of the vision sensor. The response of the vision sensor is 
largely independent of the illumination, which varies by a factor of 
135 (42dB). The right side shows photographs taken with a Nikon 
995 digital camera.
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Figure 1. The disk depicted on the left side of the figure was spun 
at approximately 1500rpm. The vision sensor produces events at the 
leading edge and trailing edges of the black dot. The response is a 
helix of events in space-time. The time-resolution is approximately 
1µ

Delbruck, continued p. 4
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pathway in the retina. Our pixel combines an 
active continuous-time logarithmic photosen-
sor with a well-matched, self-timed, switched-
capacitor amplifier. Each pixel continuously 
monitors its photocurrent for changes. It 
responds with an ON or OFF event that 
represents a fractional increase or decrease 
in intensity that exceeds a tunable threshold. 
Events are communicated asynchronously 
off-chip on a self-timed bus using AER. 

This approach makes efficient use of the 
AER protocol because events are communi-
cated immediately, while pixels that sense no 
changes are silent. We achieved a good tim-
ing resolution down to less than 10µs and a 
latency of 100µs. Because of the local sensing 
and computation of the relative changes, we 
achieved a high intrascene dynamic range of 

approximately six decades. In Figure 1 the 
events generated by a rapidly spinning dot 
paint a kind of sparkling helix in space time. 
Figure 2 illustrates the wide dynamic range. 
Our preliminary work shows that this vi-
sion sensor can be used efficiently for some 
problems because the precisely-timed events 
are useful without binning them into frames. 
We are  currently exploring these possibilities. 
It remains to be seen to what extent the lack 
of a sustained system—a DC response, for 
example—is a serious disadvantage.

Tobi Delbruck and Patrick Lichtsteiner 
Institute of Neuroinformatics
UNI-ETH Zurich
Zurich, Switzerland
E-mail: tobi@ini.phys.ethz.ch
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controlled by the motor-neuron output.3 
Each joint has an antagonistic muscle pair 
of flexor and extensor, which are activated 
by the extensor and flexor motor-neuron, 
respectively (see Figure 1). 

Robot walking experiments
Changing the walking speed of a biped 
robot on the fly without undermining its 
dynamical stability is a challenge. With 
the neuromuscular controller, the walking 
speed of our robot can be changed on the 
fly by tuning the threshold of the extensor 
sensor neuron at the hip joints. Figure 
3(A) shows the gait when this threshold is 
changed greatly and abruptly from 110° to 
95° at a time t—indicated with a line in Fig-
ure 3(B). The walking speed is immediately 
changed from 57cm/s to 82cm/s. Although 
there is no specifically-designed controller 
in charge of the sensing and control of 
the transient stage of speed-changing, the 
natural dynamics of the robot itself and 
the muscle model properties ensure stabil-
ity during the change. A video clip of this 
experiment can be seen online4.

Conclusion
Using real-time experiments, this study 
has shown that fast dynamic biped walk-
ing can be achieved using a neuromuscular 
reflexive controller without the need for any 
trajectory control mechanisms. The natural 
dynamics of the robot and the viscous elastic 
muscle model have contributed substantially 

Tao, continued from p. 1

to the motion generation of the fast walk-
ing gaits, thus simplifying the controller 
structure.
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Figure 3. (A) A series of sequential frames of the walking gait. When the neuron parameter is 
changed at the time of frame 5, the interval between two adjacent frames is 100ms. (B) Real-time 
data of the angular position of one hip joint (see the text for more information).
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Surfing most closely illustrates 
the challenge that people with 
balance problems overcome 
every day. The surface on which 
they stand is not the firm surface 
that healthy individuals perceive. 
Instead, each step is a continual 
challenge, requiring a wide base 
of support and conscious avoid-
ance of soft, spongy surfaces, 
such as grass or a sandy beach. 
These balance problems often 
stem from deficits in one of the 
three sensory systems that are 
considered crucial for flexible 
balance control: vision, somato-
sensation, and vestibular. The 
cost of poor balance to society is 
enormous. Imbalance is a major 
cause of falls, and in older adults 
is associated with functional de-
cline and frailty. The total cost 
of fall injuries for people 65 and older was 
$20.4 billion in 1994 and is expected to 
exceed $32 billion by 2020, moving a U.S. 
Congressman to introduce legislation that 
would expand fall-related research and risk 
reduction programs.1

One of the ways that people with bal-
ance problems stabilize themselves is to 
subconsciously seek out other forms of 
sensory information that substitute for their 
deficit. Like the surfer touching the side wall 
of the tube, people with balance problems 
naturally seek out surfaces to touch when 
their balance is threatened, such as when 
entering a darkened room or walking along 
an uneven or narrow surface: a log in the 
woods, for example. Our research group has 
been studying this behavior over the past 10 
years to determine what information hu-
mans derive from lightly touching surfaces. 
Recent investigations have shown that very 
light contact cues from just a single fingertip 
provide information that leads to enhanced 
control of body sway, even when the applied 
contact forces are physically inadequate to 
stabilize the body.2.3 Subsequent work has 
shown that sighted and congenitally blind 
individuals can use a cane to stabilize their 
upright stance in the same fashion as the 
fingertip, even at very low force levels.4

Light-touch contact studies
The light-touch studies paradigm is illus-
trated in Figure 1. Subjects stand on a force 
platform in a heel-to-toe stance to challenge 
their balance while touching a small force 

Light touch contact: not just for surfers

plate designed to measure the forces applied 
by the right index fingertip. The touch 
device consists of a horizontal metal plate 
attached to a metal stand situated to the 
side of the subject. The subjects place their 
right index finger on the middle of the bar 
while strain gauges mounted 
on the metal bar transduce 
the lateral and vertical forces 
applied by the fingertip. Sub-
jects were initially tested with 
eyes opened and closed in 
three contact conditions: no 
contact, during which the 
subjects’ arms hung passively 
by their side; touch contact, in 
which the subjects could apply 
only up to 1N of force; and 
force contact, during which 
subjects could apply as much 
force as desired. In the light-
touch condition, an auditory 
alarm went off if 1N of force 
was exceeded, indicating that 
the subject should apply less 
force without losing contact 
with the surface. The light-
touch task is very easy to per-
form: after just a few seconds 
of practice to get a feel for the 
threshold force, subjects rarely 
set off of the alarm. 

Figure 2 shows the typical 
results. Average displacement 
of the center of mass was 
highest with no contact/eyes 

closed and reduced in all other 
conditions. Despite mean fin-
gertip force levels that were 
more than 10 times greater 
with force than touch contact, 
light touch reduced body sway 
equivalently.

In subsequent studies, a 
servomotor was attached to the 
plate to move it sinusoidally 
at different frequencies (0.1-
0.8Hz) to derive a frequency 
response function between 
touch plate motion and body 
sway. The results were un-
equivocal. Body sway adopted 
the frequency of the touch 
plate with maximum gain at 
0.2-0.4Hz. Modeling showed 
that subjects derived velocity 
information about their own 
body sway by touching the 

plate and using that as feedback to correct 
for sway deviations.5 Subjects were not told 
beforehand that the plate might move, but 
rarely reported perception of the moving 

Figure 1. Surfers use light touch for stability.

Figure 2. The light touch experimental setup. A subject is 
pictured in the tandem Romberg posture on the force platform 
contacting the touch bar with the right index finger. The touch 
bar was either stationary or moved sinusoidally in the medial-
lateral plane. For illustration, the subject is shown exceeding 
the threshold force of 1N and the alarm is sounding. In actual 
experiments, the threshold was rarely exceeded.

Jeka, continued p. 6
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plate. They often attributed the 
increased frequency of body sway 
driven by touch plate movement 
to a squishy floor, indicating that 
cognitive processes influence how 
the sensor information at the fin-
gertip is interpreted.

How do these touch cues serve 
as a source of sensory information 
about body orientation? While 
cutaneous receptors are distributed 
across the entire body surface, they 
are particularly dense in the fin-
gertip and hand. Analogous to the 
fovea of the retina, the fingertips 
are referred to as the somesthetic 
macula.6 Two-point discrimination 
studies have shown that the finger-
tip can resolve differences as small 
as 2mm,7 which is approximately 
the mean level of sway that we 
observe with light touch contact. 
Interestingly, two-point discrimi-
nation at the bottom of the foot 
is approximately 8-10mm, which 
is approximately the mean level of 
sway observed when subjects stand 
without fingertip contact and eyes closed. 

In summary, a series of studies on 
postural control with light touch contact 
of the fingertip have demonstrated that 
somatosensory cues are a powerful orien-
tation reference for improved control of 
upright stance. The movement of contact 
forces across the skin surface of remote 
extremities is providing orientation cues 
about movement of the body and signaling 
muscular activation for corrections of body 
sway. Small applied forces are not capable of 
physically moving the body, but still provide 
information about body orientation relative 
to the surfaces upon which we stand, lean, 
and touch. 

The improvement in balance control 
observed with a mobility aid such as a cane 
is often attributed to the cane acting as a 
third leg, with the concomitant widening 
of the base of support. The light touch 
studies argue that in cases of a sensory 
deficit, improved balance control arises 
from the precise cues about body sway 
provided by somatosensory information 
from the fingertips and hand. The third 
leg is uniquely different from the real legs. 
It has the high resolution of the fingertip 
to detect movement related to body sway, 
resulting in postural corrections well before 

Jeka, continued from p. 5

the boundaries of upright stability. 

John Jeka
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Biomedical Engineering Graduate Pro-
grams
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Figure 3. Mean center of mass (COM) displacement for 
each experimental condition. COM displacement was 
highest in the no contact/eyes closed condition and lowest 
with any form of fingertip contact.

The SaliencyToolbox version 1.0 has now 
been released at:

http://www.saliencytoolbox.net
This is a collection of Matlab functions and 
scripts for computing the saliency map for 
an image, for determining the extent of a 
proto-object, and for serially scanning the 
image with the focus of attention. Being 
mostly written in Matlab, the code is easily 
accessible, easy to experiment with, and 
platform independent. The toolbox requires 
Matlab Release 13 or 14 and the Image Pro-
cessing Toolbox. Most time critical parts of 
the code are coded in C++ mex files. 

Pre-compiled binaries of the mex files 
are included for Microsoft Windows, Mac 
OS X, Linux 32 bit Intel/AMD, and Linux 
64 bit AMD Opteron. The source code can 
be compiled on any system with the GNU 
C compiler gcc. The SaliencyToolbox is 
licensed under the GNU General Public 
License.

Parts of the code are reimplemented 
from the iNVT toolkit at Laurent Itti’s lab at 
USC. This toolbox complements the iNVT 
code in that it is more compact (about 5,000 
versus 360,000 lines of code) and easier to 
understand and experiment with, but it only 
contains the core functionality for attending 
to salient image regions.

Although time critical procedures are 
contained in mex files, processing an image 
with the SaliencyToolbox in Matlab takes 
longer than with the iNVT code. Whenever 
processing speed or feature richness is para-
mount, the iNVT code should be preferred. 
For computing the saliency map or attend-
ing to salient proto-objects in an image in a 
transparent and platform independent way, 
the SaliencyToolbox is a good choice.

This code was developed as part of Dirk 
Walther’s Ph.D. thesis in the Koch Lab at 
Caltech, made possible by funding from NSF 
and NIMH.

Dirk Walther
Postdoctoral Fellow
Centre for Vision Research
Room 0009, CSE Building
York University
4700 Keele Street
Toronto, ON M3J 1P3
Canada
E-mail: ����������������dirk@cs.yorku.ca
http://klab.caltech.edu/~walther

Saliency toolbox 
released



The Neuromorphic Engineer �  Volume 3, Issue 1, May 2006

Complex systems developed by neuro-
morphic engineers require interfaces to 
interconnect them, and to connect them 
to PCs for development, debugging, or 
other purposes. This concept was the start-
ing point for the development of a set of 
address-event-representation (AER) tools 
under the European CAVIAR (convolu-
tion address-event-representation vision 
architecture for real-time) project. 

Our team is comprised of four part-
ners working together in the design of a 
neuromorphic vision system based entirely 
on AER principles. CAVIAR connects the 
biggest AER chain constructed to date.1 The 
front of the signal chain is composed of a 
128×128 ‘retina’ that spikes with temporal 
and contrast changes,2 four convolution 
chips that can detect a ball at different 
distances from the retina,3 and four object 
chips that filter the convolutional activity.4 
This is coupled to a two-chip learning stage 
comprised of a delay line and a learning 
element.5 To make such a vision system 
useable, a set of AER-tools are not only 
useful, but also necessary, for developing 
interconnections and debugging.

These AER Tools are divided into four 
different printed circuit boards (PCBs) 
which, depending on the firmware down-
loaded to them, can have eight different 
functionalities. Our group, the robotics 
and computer technology (RTC) team, has 
developed a PCI bus-to-AER interface, that 
uses the Rome PCI-AER design (developed 
by Dante) as a starting point. It consists 
of two universal serial bus (USB)-to-AER 
interfaces and an AER-to-AER interface. 
All elements have their own Linux and XP 
drivers and Matlab interfaces.

A CAVIAR PCI-to-AER interface
The PCI bus’s high bandwidth and wide 
availability of commercial PCI interface 
silicon makes it an excellent tool for inject-
ing and reading events to an AER system, 
provided a suitable bridging interface to the 
AER bus can be developed. Our interface 
differs from the Rome PCI-AER6 in several 
characteristics: The CAVIAR PCI-AER is 
not a communications center and does not 
include a mapper or a splitter/merger. Our 
PCI-AER interface simply serves as a very 
fast communication channel (up to 10M 
events/sec versus. the 1M events/sec capacity 
of the Rome board) between the AER bus 
and the PC software.

This system, shown in Figure 1, is 

Address-event-representation tools

designed around a Xilinx Spartan II 200 
field-programmable gate array (FPGA), 
with a PCI interface developed in very-high-
speed integrated circuit (VHSIC) hardware 
description language (VHDL) by the RTC 
group. This makes it cheaper and faster. 
It has one AER output bus and one AER 
input bus. Both have their own first-in-first-
out (FIFO) buffers that can save the event 
information and its timestamp for up to 128 
events (output) and 256 events (input). The 
circuit uses a relative timestamp (indicating 
the distance between consecutive events), 
but the time controller is able to recover 
from protocol-induced delays. Therefore, 
if one event is delayed, the subsequent ones 
don’t have to be. The timestamp function 
is configurable for resolutions ranging 
from 30ns to 480ns per timer tick. The 
CAVIAR PCI-AER interface supports PCI 
mastering. 

A USB-to-AER interface
While a USB-based AER interface delivers 
less bandwidth than its PCI-based coun-
terpart, its smaller size, ease of use, and 
versatility make it very valuable for many 
applications. This interface is designed 
around a Spartan II 200 FPGA and a Cygnal 
8051 USB microcontroller: elements that 
make it fully configurable. The USB inter-
face’s maximum throughput is 6Mbits/sec 
(~187K events/sec), which limits the use of 
this interface for event based communica-
tions between the PC and the board. This 
allows the interface to receive the control 
information or frames (bitmaps) from the 

PC, whereupon it uses hardware-based 
frame-to-AER transformations to produce 
AER events.

The board’s integrated 32-bit wide 2MB 
SRAM, memory card slot, USB connector 
and dual AER connectors (as shown in Fig-
ure 2), make it a very attractive platform for 
developing an interesting set of AER tools. 
The elements of the tool collection can be 
broken into two categories; PC dependent, 
and independent. In PC-dependent tools, 
the USB bus is used both to download 
FPGA firmware and pass commands and 
data to and from the interface. When used 
as a PC-independent tool, the interface’s 
embedded memory card has the firmware 
stored and the microcontroller downloads 
it to the FPGA without the need of a host 
PC.

This board currently has several avail-
able firmware options that provide differ-
ent functionalities. The AER generator 
downloads a frame (bitmap) from a PC 
and, through a method for synthetic AER 
generation,7 uses it to create and transmit a 
sequence of events. One of the generation 
methods uses a Poisson distribution of 
events.8  The board’s AER mapper function 
can be firmware-configured in either a 1-1 
or 1-N (with N from 0 to 8) arrangement. 
Firmware is also available to instantiate a 
probabilistic version that assigns a prob-
ability to each of the possible output events 
associated to an input event. 

The board’s firmware can also be used to 
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Figure 1:  A photograph of the CAVIAR PCI-AER interface board.
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invoke either a USB-based 
or a VGA-based frame-grab-
ber. The USB frame-grab-
ber supports both 32×32 
and 64×64 image sizes, and 
the VGA version supports 
64×64 and 256×256 image 
sizes that use an additional 
AER-VGA daughter board. 
The firmware also supports 
a data-logger and player. 
It uses the 2Mb SRAM to 
capture up to 512K events 
with 16 bits of relative time-
stamp resolution. It can 
also play back a sequence of 
events stored in the SRAM, 
received from the PC via a 
USB link.

The AER switch
The AER switch interface is 
able to support both one-to-
many and many-to-one con-
nections between chips or 
PCs. It does this using two 
different operations. The 
switch’s AER splitter opera-
tion routes an AER input 
to up to four AER outputs. 
These outputs can have the 
input traffic replicated, or be 
assigned to different ranges. 
In the AER merger function, up to four 
inputs can be joined to one output. The 
merger function can also append tagging 
bits to the data that identify the input chan-
nel if necessary.

The AER switch is based on a Xilinx 
9500 complex programmable logic device 
(CPLD). It has five AER ports; one input, 
one output, and three bidirectional ports.

The mini-USB-AER
A reduced version of the USB-AER that is 
appropriate for small event rates and simple 
operations has been developed together 
with Toby Delbruck from the Institute of 
Neuroinformatics. This interface allows an 
AER bus to connect to a PC in both direc-
tions (sequencer or monitor). The mini-
USB-AER PCB is based around a Cygnal 
8051 microcontroller, with no FPGA.

A software kit is available that supports 
this board as a monitor for speeds of around 
100Kevents/sec. A new version that sup-

ports high speed USB2.0 and is capable of 
event rates up to 8M events/sec is currently 
under test.

Alejandro Linares-Barranco and Antón 
Civit-Balcells
Robotic and Computer Technology Ap-
plied to Rehabilitation Group
University of Seville, Spain
E-mail: alinares@atc.us.es
http://www.atc.us.es/ 
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Hubel and Wiesel in their work on the visual 
cortex,2 a feed-forward input vector-weight 
matrix-output vector computation that 
provides an explicit initial representation 
of the world. This representation is a linear 
transformation of an already-efficient but 
less explicit representation furnished by the 
thalamus. 

The thalamic representation is optimal 
in terms of second or-
der (pairwise) statistics 
only, while the neocortex 
takes into account re-
sidual, higher-order de-
pendencies. The thalamic 
representation is merely 
a copy of the ‘whitened’ 
or decorrelated retinal 
representation that is also 
sent to more primitive 
brain areas such as the col-
liculus, where immediate 
actions, based on learned 
second-order statistics 
plus inherited knowledge, 
are initiated. The cortex 
is an ‘add-on’ device that 
provides slower, higher-order corrections.3 

Hubel and Wiesel originally suggested 
that the layer 4 ‘simple’ cells are tuned to 
local orientation because oriented lines and 
edges are particularly rich in the natural 
world (and therefore provide a natural 
‘code’). Since then, this insight has cor-
roborated through more quantitative 
analysis with tools from information theory, 
statistics, etc. 

Indeed, statistically optimal representa-
tion of natural scenes, based on the idea 
that the mutual information between the 
scenes and their neural representations 
should be maximized, leads directly to the 
concept of local orientation filters, i.e. inde-
pendent component analysis (ICA).4 This 
strategy exploits higher-order redundancies 
to generate optimal codes. Such a code is 
‘generative’ in that it attempts to model 
the transformation, in the real world, that 
leads from ‘objects’ and other underlying 
‘causes’ to sensory data (patterns of light 
on the retina etc). 

In ICA, the generative model is linear 
but, in principle, nonlinear processes can 
also be modeled. This seems to happen 
in the transformation from simple cells 
(orientation-tuned and position-sensitive) 
to complex cells (typically found in layers 2 

and 3) that are orientation-tuned but locally 
position-insensitive. Representations in later 
layers also incorporate temporal correlations 
(leading, for example, to direction-tuning). 
This framework is an appealing, though 
incomplete, ‘candidate’ for the elusive laurel 
of ‘canonical microcircuit’. (The canonical 
microcircuit concept, that there is a core 
information-processing strategy throughout 

the mammalian cortex, is controversial, but 
without it prospects for hardware emulation 
seem hopeless, since there would be nothing 
to emulate).

The idea that neocortex learns high 
order statistics, thereby capturing aspects 
of the structure of the world, and then 
reprocesses representations using further 
nonlinearities fits in well with recent evi-
dence that cortical outputs are rerouted back 
to cortex via the thalamus.5 This suggests 
that the neocortex progressively develops a 
sophisticated world model by hierarchical 
reapplication of a standard algorithm. This 
sophisticated model then corrects simpler 
subcortical processing to generate appropri-
ate behavior.

Accurate model-learning requires specific 
Hebbian synapses
The brain is a nanoelectronic computing de-
vice where information is stored in elemen-
tary locations called synapses. Synapses are 
micron-sized units with complex read/write 
functionalities, but the information is stored 
as numbers of transmitter-sensitive ion 
channels, at resolutions ranging from one 
to several dozen bits per synapse. As in ‘dry’ 
(non-biological) computers, information is 
read and written using voltage pulses. The 

‘read’ voltage is provided by the arrival of 
a presynaptic ‘spike,’ that releases transmit-
ter, which in turn generates a postsynaptic 
response that is proportional to the number 
of transmitter-sensitive ion channels. The 
summed postsynaptic responses may trigger 
a delayed ‘write’ pulse. This back-propagat-
ing dendritic spike initiates a small synaptic 
strength increment at synapses that are 

marked by the arrival of 
a ‘read’ spike in the previ-
ous 10msec interval. The 
process of incrementing 
those synapses whose 
read-out contributed to 
the ‘write’ spikes is known 
as a ‘Hebb Rule’. 

The overall effect of 
this rule is that neurons, 
and hence brains, steadily 
improve their predictive 
abilities. In other words, 
output spikes become 
better correlated with 
input spikes, much in 
the way that organisms 
steadily improve their 

replicative ability. But, just as in a dry com-
puter, a fundamental limit to this ability is 
set by the precision with which information 
can be cheaply written. One way in which 
information is precisely written in the brain 
is that the molecular signal for the conjunc-
tion of presynaptic ‘read’ and postsynaptic 
‘write’ spikes (a local calcium ion response) 
is localized to an individual synapse. But 
recent data, as well as basic physics, reveals 
that this localization is not 100% because 
a small fraction of the calcium leaks to 
nearby synapses. The result is the spurious  
strengthening of synapses. This leakage is 
the Achilles heel of wet (neural) computing, 
and we suspect the neocortex is, above all, 
a device for avoiding the potentially cata-
strophic consequences of such errors. Even 
very rare errors can snowball as Hebbian 
learning progresses, especially for nonlinear 
neurons and higher-order statistics, leading 
to an ‘error catastrophe.’ Just as replication 
errors impose a universal ‘speed limit’ on 
Darwinian adaptation, Hebbian inaccuracy 
imposes a limit on synaptic learning. 

So how does the neocortex raise the 
learning speed limit? The basic mechanism 
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Figure 2. An illustration of a proposed ‘canonical neocortical microcircuit’ that proofreads 
synaptic updates and avoids learning error  catastrophes. T/J refers to thalamus, 4/I to 
spiny stellate cells in the thalamorecipient layer of cortex, and 6/K to the coincidence-
detecting plasticity-gating deep pyramidal cells.
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LABORATORY NOTES
Charge-based CMOS realization of unconventional functions
Neuromorphic systems make use of a set 
of specific functions that exhibit specific 
or unconventional behavior. These include 
winner-take-all (WTA), weighted average, 
and thresholding, functions. These can 
be integrated using various design tech-
niques, such as analog or digital, standard 
or subthreshold realizations. In this paper, 
we present a brief survey of charge-based 
realizations of several functions. These can 
be used as building blocks in the synthe-
sis of larger-scale CMOS integration of 
neuromimetic circuits, using as an atomic 
functional operator the capacitive threshold 
logic (CTL) circuit presented earlier.1

Modified CTL gate
The basic CTL gate consists of a floating 
central node, called a row on Figure 1, that 

is capacitively-coupled to input signals and 
connects to a thresholding unit. In its sim-
pler form, the thresholding unit is formed 
by a CMOS inverter circuit, but faster op-
eration can be obtained using a differential 
realization.2 CTL gate operation consists 
of a prechage phase (Φ1) where all circuit 
nodes are set to reference voltages, followed 
by an evaluation phase (Φ2), where all circuit 
node voltages are influenced by selected 
input values. Inaccuracies in the absolute 
values of the integrated capacitances are 
cancelled by the fact that all operations rely 
on capacitance ratios, exclusively.

Considering only the analog column as 
input, the operation realized by this circuits 
consists of a weighted average of its inputs 
(Equation 1), followed by thresholding by 
the CMOS first inverter stage (Equation 

2). An obvious modification of the basic 
gate consists of including bias capacitances, 
which are used in the same precharge-evalu-
ation scheme to modify the relative value of 
the threshold .3 In a similar way, a perturba-
tion capacitance is connected to the central 
node. It is operated using a third clock phase 
(Φ3), which is taking place at the end of the 
evaluation phase in an overlapping way. A 
perturbation signal may consist of a ramp or 
a pulse of calibrated amplitude, allowing the 
detection of the actual row voltage.4

Combined gates realization
The mixed use of CTL-CMOS logic gates 
is applied in the synthesis of Multiple-Val-
ued Logic (MVL) operators, such as the 
literal gate, MVL-NAND/NOR, whereas 
the use of an averaging circuit allowing level 
recovery allows the synthesis of complex 
MVL transfer functions, such as the T-gate, 
NMIN/NMAX functions.5 

Cascading the charge-based stages into 
a configuration consisting of a CTL first 

Figure 1. Modified capacitive threshold gate, using threshold biasing and row voltage perturbation 
inputs; multiple analog columns (n) may be connected.
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(as in accurate DNA copying) may be Heb-
bian ‘proofreading’ (see Figure 2).6 

The Hebbian connection from J to I 
(representing, for example, a thalamocorti-
cal connection) can undergo strengthen-
ing as a result of coincident firing of the 
J and I cells, but this strengthening is not 
100% precise, and may lead to a learning 
catastrophe (weights randomize). This can 
be prevented using a second independent 
assessment of coincidence using a special 
‘K’ neuron, which then ‘gates’ the plasticity 
of the feed-forward connection. The gat-
ing signal is fed to both the input (J) and 
output (I) cell, and conjunction of pre- and 
postsynaptic gating signals is required for 
Hebbian updates to occur. This circuit 
closely resembles those found in the neocor-

tex but, as of this writing, the proofreading 
hypothesis is unproven.

In all known examples of intelligence 
(evolution, brains, and computers) the 
key step is writing information accurately. 
Future intelligent neuromorphic devices 
will also require accurate ‘synapses,’ and, 
probably, neocortex-like ‘proofreading.’ 
It’s likely that while we are using super-
computers to understand the brain,7 we 
will need to understand the brain to build 
hypercomputers.

Paul Adams and Kingsley Cox
Department of Neurobiology 
SUNY Stony Brook, NY 
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stage, followed by a degenerated CTL sec-
ond stage, and a level recovery circuit allows 
the synthesis of unconventional functions as 
depicted in Figure 2(a) and Figure 2(b).

The hardware integration of the Ham-
ming artificial neural network has been pro-
posed6 where an analog WTA is integrated. 
A modified version using programmable 
capacitance weights has been proposed.7 
The CTL gate using bias and perturbation 
capacitances has also been demonstrated,8 
where the perturbation capacitance is used 
to transfer the circuit results into the time-
domain. this allows subsequent use of low-
overhead digital circuits, mainly consisting 
of counters and latches, in order to process 
k-winner-take-all/k-loser-take-all functions 
and image processing applications such as 
pattern alignment.

The microelectronic integration of the 
proposed circuits requires the implementa-
tion of a number of double-poly capacitances 
on-chip to handle charge-based operations. 
Several circuits have been integrated in 
various fabrication technologies including 
0.8µm, 0.5µm, and 0.35µm CMOS. Full 
functionality could be demonstrated using 
relatively small unit capacitances of typically, 
20fF, 40fF, and 50fF. The circuit response 
time depends on the actual implementation. 
Worst-case response times of less than 10ns 
are typically observed, whereas the fastest 
gates switch in less than 5ns. The charge-
based gate should not be considered as a 
direct replacement of CMOS logic in the 
synthesis of basic Boolean operators, where 
CMOS is clearly superior in terms of speed. 
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However, in the synthesis of complex or 
unconventional functions, charge-based 
gates are competitive with respect to CMOS 
in terms of functional processing speed 
and chip area, due to the inherent analog 
processing of the CTL gate. 
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and for discussions of the needs of various 
users from labs around the world. Par-
ticipant feedback was quite positive, and 
continuing discussion on a blog or website 
was the most-commonly expressed desire. 
We feel that our community needs many 
more workshops of this kind, by various 
experts on different topics, and that this 
type of intense, goal-oriented workshop 
provides both camaraderie and inspiration 
that generate excitement. 

Figure 2. Unconventional transfer functions 
observed using a cascade of charge-based gates; 
(a) Synthesis of a non-symmetrical pyramidal 
transfer function (trace 1 is input and trace 
2 is output), and (b) exotic transfer function 
surface, composed of a large number of steps.
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The INE/UPenn word-serial address-
event representation workshop
Since the beginning of neuromorphic VLSI 
(very-large silicon integration), designers 
have been grappling with the problem of 
transmitting thousands of neural signals on 
and off chips. Starting with the pioneering 
work of Sivilotti and Mahowald, the re-
search community has largely stuck with an 
asynchronous event-driven interface where a 
silicon neuron’s digital address is transmit-
ted when it spikes. As such, log2(N) shared 
wires replace N dedicated wires. These 
address-events, as they are called, utilize 
the speed of metal wires, which is wasted 
when a wire is dedicated to a single neuron. 
Sharing bandwidth this way enables larger 
neural networks to be built. Also, address-
events can be rerouted, whereas metal wires 
cannot. While most of the improvements in 

this approach have focused on mechanisms 
for routing and broadcasting spikes between 
chips and computers, little has changed in 
the actual protocol. 

Until recently, the existing protocol 
could not be expanded to handle systems 
with multiple senders and receivers without 
adding significant external circuitry because 
this decade-old technique did not distin-
guish one chip from another. The Boahen 
lab at the University of Pennsylvania created 
a new protocol that addresses this limita-
tion. The word-serial address-event repre-
sentation (AER) appends chip addresses 
to the neuron’s row and column addresses, 

all of which are transmitted sequentially, 
thereby distinguishing events from differ-
ent chips. In addition to being expandable, 
word-serial is efficient: it cuts the number 
of address lines in half.

While creating a new protocol for com-
munication that is expandable is an academic 
achievement, it only becomes useful if it is 
adopted by many users. To promote this 
new approach and facilitate its adoption, 
we obtained financial support from INE 
and organized a short, focused workshop to 
train students and faculty on the word-serial 
AER concept and on automated tools for its 
implementation. We also received a gener-
ous donation of CAD software (Tanner 
Tools Pro) from Tanner Research. After so-
liciting applications from advanced students 

and interested faculty, we selected a group to 
meet 1-5 December, 2005 at the University 
of Pennsylvania campus in Philadelphia. 
INE paid the travel expenses of domestic 
applicants and the lodging expenses of all 
non-faculty workshop participants at a hotel 
on campus. A conference room on campus 
was filled with rented computer systems 
loaded with the Tanner Tools Pro package 
and the Boahen Lab’s chip-design tools. In 
addition to the organizers, we enlisted the 
help of two dedicated teaching assistants: 
Joseph Lin and Paul Merolla, both from 
the Boahen Lab. 

The primary goal of our workshop was 

to have participants leave with the finished 
layout of a chip design that incorporates a 
core circuit from their particular research 
area into a word-serial AER transmitter 
and/or receiver frame. All designs were to 
be compatible with the L-Edit software 
suite upon arrival. While this was a bur-
den for some participants, it was the only 
practical way to ensure a completed chip 
in three days.

One important component of the work-
shop was the requirement that every partici-
pant arrive having read the tutorial docu-
ment and with a completed pixel layout, 
plus schematics. Joseph Lin was assigned to 
pester everyone two weeks ahead of time to 
send in their layout and schematics so that 
he could check them. We asked everyone to 
give a 10 minute talk at the beginning of 
the workshop to present their pixel design 
and explain what their overall plan was for 
a chip. On the first day, Joseph Lin gave a 
short lecture on the ChipGen tool for com-
piling AER chips developed in the Boahen 
Lab. Kwabena Boahen gave two lectures 
describing the evolution of the particular 
transceiver implementation that ChipGen 
was compiling and the types of output the 
fabricated chip would produce. He also 
presented a vision for the future of AER and 
multichip neuromorphic systems.

Projects brought by the participants 
included: a 2D current-mode cochlea with 
AER neurons; an ultrasonic cochlea with a 
2-D array of AER neurons; a high-resolu-
tion avalanche diode array imager; a 2D 
neuron transceiver chip; a contact imager 
for detecting the location of cell shadows; 
a spiking neuron imager with correlated 
double-sampling; and a 2D change-detec-
tion retina that signals using AER spikes.

Because of the workshop’s short length, 
accomplishing our goals required dedica-
tion, as well as prior preparation. While 
we were proactive in urging that everyone 
arrive prepared, it was difficult to anticipate 
the miscommunication and confusion on 
certain aspects of ChipGen’s operation, 
a result of insufficient detail in the docu-
mentation we provided. We resolved these 
questions at the workshop, but precious 
time was lost. 

Overall, the workshop was a great 
opportunity for intense interaction with 
students interested in utilizing ChipGen, 
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