
mable logic in parallel (not in serial). An 
example of this real-time computation is 
shown in Figure 3.

The system emulates the responses of 
complex cells that are tuned to particular 
binocular disparities based on the disparity 
energy model.5 Here, the emulation is car-
ried out with a binocular platform as shown 
in Figure 2. In the experiment, a hand was 
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Figure 3. Real time disparity computation 
with the binocular vision system. (A) Sketch 
of the experimental setup. (B) Neural images 
of the complex cells tuned to the disparity of 
near, fixation and far.
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Neuromorphic robot 
vision with mixed analog- 
digital architecture
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•	 Audiosapiana: a biography
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•	 Bio-inspired robot vision for a
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•	 Wide-dynamic-range imaging

•	 Cortically-inspired active
	 binocular vision system

	 Laboratory Notes

•	 The USB RevolutionRobotic vision is the most fascinating and 
feasible application for neuromorphic en-
gineering, since processing images in real 
time with low power consumption is the 
field’s most critical requirement. Conven-
tional machine vision systems have been 
implemented using CMOS (complimen-
tary metal-oxide semiconductor) imagers 
or CCD (charge-coupled device) cameras 
that are interfaced to digital processing 
systems operating with serial algorithms. 
These systems often consume too much 
power, are too large, and compute with 
too high a cost.1

Though neuromorphic technology has 
advantages in these areas, there are some 
disadvantages too: current implementations 
have less-programmable architectures, for 
example, than digital processing technolo-
gies. In addition, digital image processing 
has a long history and highly-developed 
hardware and software for pattern recogni-
tion are readily available. We therefore think 
it is practical—at least at the current stage of 
progress in neuromorphic engineering—to 
combine neuromorphic sensors with con-

ventional digital technology to implement, 
for robot vision, the computational essence 
of what the brain does. On this basis, we 
designed a neuromorphic vision system 
consisting of analog VLSI (very-large sili-
con integration) neuromorphic chips and 
field-programmable gate array (FPGA) 
circuits. 

Figure 1 shows a block diagram of the 
system, which consists of silicon retinas, 
‘simple-cell’ chips (named after the simple 
cell in the V1 area of the brain) and FPGA 
circuits. The silicon retina is implemented 
with active pixel sensors (conventionally-
sampled photo sensors)2 and has a con-
centric center-surround Laplacian-Gauss-
ian-like receptive field.2 Its output image is 
transferred to the simple-cell chips serially. 
These chips then aggregate analog pixel 
outputs from the silicon retina to generate 
an orientation-selective response similar 
to the simple-cell response in the primary 
visual cortex.3 The architecture mimics the 
feed-forward model proposed by Hubel 
and Wiesel,4 and efficiently computes the 
two dimensional Gabor-like receptive field 
using the concentric center-surround recep-
tive field.

The signal transfer from the silicon reti-
na to the simple cell chip is performed using 
analog voltage, aided by analog memories 
embedded in each pixel of the simple cell 
chip. The output image of the simple-cell 
chip is then converted into a digital signal 
and fed into the FPGA circuits, where the 
image is further processed with program-

Receptive
fieldSilicon retina

ADC

Simple cell chip

input image

FPGA

Figure 1. Block diagram of the mixed 
analog-digital system and analog multi-chip 
circuit for an orientation-selective response. Shimonomura, continued on p. 4

Figure 2. 
Photograph 
of the 
binocular 
vision 
system.
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This year’s three-week summer workshop 
included background lectures (from lead-
ing researchers in biological, computational 
and engineering sciences), practical tutorials 
(from state-of-the-art practitioners), hands-
on projects (involving established research-
ers and newcomers/students), and special 
interest discussion groups (proposed by the 
workshop participants). Two daily lectures 
(90 minutes each) covered issues important 
to the community in general, presenting 
the established scientific background for the 
areas and providing some of the most recent 
results. These lectures spanned most of the 
diverse disciplines comprising neuromor-
phic engineering. Furthermore, additional 
lectures were presented by group work par-
ticipants in the afternoons on topic germane 
to the projects.

There were 84 attendees, composed of 
eight organizers, seven administrative and 
technical staff members, 27 invited speak-
ers, 10 neurobiologists (a joint workshop 
organized by Terry Sejnowski) and 32 ap-
plicants/students/invitees (as detailed at our 
web-site1). Participants were encouraged 
to become involved in as many activities 
as interest and time permitted. They were 
free to explore any topic, choosing among 
the 10 workgroups and approximately 30 
hands-on projects, and five interest/discus-
sion groups. 

Some of the highlights of the work and 
discussion groups are detailed below.

Telluride Grand Challenge 
This first time event (see more details on next 
page–Ed.) was modeled after the DARPA 
(Defense Advanced Research Program 
Agency) Grand Challenge. It required 
groups of participants to equip robots with 
neuromorphic sensors and sensory process-
ing systems to navigate a cluttered environ-
ment. Three quarters of the robot had to 
cross the finish line. Similar to the first time 
the DARPA Grand Challenge was held, the 
Telluride Grand Challenge did not produced 
a complete winner, although one robot 
covered 99% of the course before crashing 
into the finish line! A video showing the 
highlights of this race is available online.3

Bias generators
Participants learned why it is important to 
build chips that can be manufactured and dis-
tributed to users, how generating controlled 
bias currents that span a very large range is 
the main necessity for neuromorphic chips, 

Telluride Workshop:
Highlights from 2005

Etienne-Cummings, continued on p. 4

how these circuits work, and how a design 
kit for Tanner computer-aided-design tools 
is used to automatically generate layout for a 
given set of bias currents. All the participants 
generated their own bias generator layout 
using the design kit.

Computational neural systems
This workgroup covered a wide range of 
topics that overlapped with several oth-
ers. The main emphasis was on address-
event-representation multi-chip systems. 
However, within this theme, the projects 
covered auditory processing, learning theory, 
FPGA (field-programmable gate array) and 
CPLD programming, and neural-network 
dynamics.

My first AER chip
The goal in this first-time workgroup was 
to have participants leave with a chip design 
(finished layout) that incorporates a core 
circuit from their particular research area 
into a word-serial AER transmitter (and/or 
receiver) frame. They were provided the 
participants with ChipGen, a tool written in 
the Neuroengineering lab at the University 
of Pennsylvania. An L-Edit macro, ChipGen 
compiles the core circuit layout into a fully-
verified chip. Two teams designed a conduc-
tance-based neuron, while the third pursued 
a switched-capacitor-based design.

Stochastic synapse transmission in VLSI 
AER systems
Also presented for the first time, this 
workgroup discussed the stochastic nature 
of synaptic transmission, its possible role 
in information transfer and learning, and 
(mainly) ways to implement it in AER VLSI 
(very large silicon integration) systems. It 
studied possible ways of implementing sto-
chastic synaptic transmission in AER VLSI 
systems following three main approaches: 
implementation of stochastic mechanisms 
via the AER communication infrastructure; 
implementation of stochastic mechanisms 
using mixed-mode analog/digital circuits, 
and on/off chip solutions; and implementa-
tion of stochastic mechanisms at the basic 
synaptic circuit level, using sub threshold 
MOSFETs (metal-oxide semiconductor 
field-effect transistors).

Vision chips
This group mainly focused on tutorials of 
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This year’s Telluride Neuromorphic En-
gineering Workshop (June-July, 2005) 
featured a new event: the Telluride ‘Grand 
Challenge’ Robot Race. While this was a 
simple event, our goal was to create a fun, 
focused activity that would guide the many 
different participant and workgroup proj-
ects towards a concrete demonstration.

Our chosen task was a combination of 
goal-seeking and obstacle avoidance behav-
ior that challenged robots to negotiate an 
unknown obstacle course autonomously. 
We encouraged the integration of many 
different sensor modalities (e.g., visual, 
olfactory, auditory, tactile), decision-mak-
ing models, and locomotion platforms 
(wheeled, slithering, and walking robots) to 
provide diversity and encourage innovative 
solutions. The competition took place in a 
simple rectangular arena with the start and 
finish points in opposite corners, and with 
obstacles (boxes and trashcans) placed at 
the last minute. 

The rules of competition were straight-
forward:
1. Robot entries must run ‘autonomously’. 
Judges may allow a reset intervention for 
up to three tries.
2. ‘Dumb’ beacons of various types may 
be used only at the end point. Any beacon 
you create must be considered public (i.e., 
usable by everyone, if desired).
3. At least 1/3 of the original mass of the 
robot entering the race must cross the fin-
ish line.
4. Robot entries may not damage the race-
course, judges, or bystanders.
5. Water, pyrotechnics, and radiation 
sources should not play any role in the 
robot’s operation or construction (see also 
rule 4).
6. Obstacles will be finalized (but not their 
position) and shown to the competitors at 
least two days prior to the race.
7. All robots must begin with zero initial 
kinetic energy.
8. Robots must not move obstacles out of 
their initial locations.

In support of the competition, the 
companies K-Team and Wow-Wee Toys 
generously donated development and robot 
hardware, both for use in the competition 
and as prizes. K-Team sent the KoreBot de-
velopment board, compatible for mounting 
on Koala mobile robots, but also good for 
general use. WowWee sent RoboSapiens 
and RoboRaptor platforms. Two Robo-
Sapiens were used in the competition while 

to generate an estimate of the interaural 
time difference of the sound. The Koala 
robot already implements infrared-based 
obstacle avoidance.

RoboSensation (Tobi Delbruck, Hisham 
Abdalla, Jonathan Tapson, Deborah Gun-
ning, Gong Boonsobhak and Joseph Lin) 
was a RoboSapien platform that used a 
wireless network device to send commands 

and data between the robot and a laptop. 
The built-in microphones were used to 
estimate the beacon direction. Both a visual 
tracking chip and a commercially-available 
solvent sensor were interfaced to use an 
odor plume for goal guidance.

AudioSapiana (Antje Ihlefeld, Mounya 
Elhilali, Malcolm Slaney, Nima Mesgarani, 
Tara Hamilton, Jonathan Tapson, Stephen 
David, Sue Denham, David Anderson, Shi-
hab Shamma, and Andreas Andreou) was 
constructed from a network of two comput-
ers that communicated sound data through 
the workshop’s WiFi-accessible file system. 
(Full details in article on next page–Ed.)Using 
a binaural auditory saliency model, the two 
functions of goal-direction finding and rec-
ognition of the beacon sound were handled 
across two computers. This team suffered 
the ill-fortune of a town-wide power failure 

we reserved a brand-new RoboRaptor as 
a prize.

Competitors
By racetime we had 12 entries that ranged 
from simple locomoting devices with little 
to no sensing capabilities to fully sensor-
equipped robots with goal-sensors and 
obstacle avoidance behaviors. There were 
many notable entries:

Garcia, the Antennanator (Noah Cowan, 
Mitra Hartmann, Jennifer Laine, Vincent 
Chan, and Kate Williams) was a robot 

platform that employed two whisker sensors 
to detect obstacles and trigger movements 
that allow extended wall-following behav-
ior. This robot succeeded in progressing 
about 80% of the way towards the finish 
line, negotiating two box obstacles before 
getting stuck against the wall. They did not 
implement any goal-sensing capabilities.

Kave/Koala robot (Olivier Rochel, Peng 
Xu, Christian Faubel, André van Schaik) 
was a binaural cochlea chip that gener-

ated AER spikes from two microphones 
mounted on a Koala robot platform. For 
stimulation, they used a sonar ‘ping’ beacon 
at the finish line, and the spikes were used 

The Telluride ‘Grand Challenge’ Robot Race

Horiuchi, continued on p. 9

Garcia, the Antennanator

The Kave/Koala Team

RoboSensation
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successful vision chips developed by work-
shop attendees. In particular, Tobi Delbruck 
talked about his ‘physiologist’s friend’ ori-
entation-detection chip, Timothy Horiuchi 
talk about his ‘horizon detection’ vision 
chip, while André Van Schaik described his 
‘LogiTek trackball mouse’ chip. The latter is 
one of the few �����������������������������   neuromorphic chips  that has 
been ������������������������commercially-successful.

Distributed neuromorphic sensor nets
Wireless sensor networks have been enabled 
by development of powerful wireless digital 
radio components, along with operating sys-
tems like TinyOS that support networks of 
wireless sensors. Low-power neuromorphic 
chips are very interesting for this application 
because they can provide significant prepro-
cessing of sensory information without the 
necessity of active digital processor compu-
tation. In addition, the sensor information 
captured by (for instance) a silicon retina, is 
preprocessed to greatly reduce redundancy, 
so that when nodes send wireless informa-
tion, they have much less processing to do 
themselves and the data transmission rate is 
reduced. This year’s projects included online 
learning using TinyOS, giving commercial 
robots—like RoboSapien—eyes and ears. 

Locomotion workgroup
This group continued their work of miniatur-
izing locomotion controller chips. Jocob Vo-

gelstien, brought a new 24-neuron floating 
gate (FG) central-pattern-generator (CPG) 
chip that was tested in one of the workgroup 
projects. Also, a 10-neuron CPG Chip with 
digital synapses was used to control a biped, 
RedBot, with hip and knee muscles. A new 
version of RedBot was introduced by Tony 
Lewis, which also had ankle muscles and 
springy toes. The CPG chip that we had 
available could not control all the muscles 
in this new robot, but next year the group 
plans to control all the muscles using the 
new FG-CPG chip. Lastly, this group started 
investigating the muscle synergies, using Viv-
ian Mushahwar’s ‘IF-THEN’ algorithms, to 
make a RedBot dance.

Auditory work group
The audition group provided the ‘enabling 
technologies’ for various projects in the 
computational neuroscience, distributed sen-
sors and Telluride Grand Challenge (TGC) 
groups: two of the three most successful 
robots in the TGC used auditory cues to find 
the finish line. 

Sensors and robotics work group
This year saw increased activities in tactile 
sensing, particular due to the collaboration 
of a newcomer to the neuromorphic commu-
nity—Noah Cowan—with Mitra Hartmann. 
The projects in this work group included: 
tactile sensing for robotic locomotion; cock-

roach antennae and rat whiskers; Garcia (the 
orange touchy-feely robot); whisker sensors 
for obstacle avoidance; and dynamical sys-
tems approach to robotic navigation. Two 
projects lead to Telluride Grand Challenge 
entries, and they were quite successful, win-
ning one of the top prizes! 

Conclusion
The lectures were again of the highest qual-
ity, with some of the top neuroscientists, 
computer scientists and engineers occupy-
ing the same room and discussing some 
of the most timely research questions. The 
participants were particularly engaged this 
year, showing the depth and breath of their 
knowledge. We had a number of lectures that 
had to be spread over four hours because of 
discussion and questions. A list of the speak-
ers and talk titles is posted online.3 We are 
already planning next year’s Workshop and 
hope to continue the great tradition of the 
last 10 years.

Ralph Etienne-Cummings
Johns Hopkins University
Baltimore, MD
E-mail: retienne@jhu.edu
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moving from far to near, crossing the fixa-
tion point (see Figure 3A). Figure 3B shows 
the disparity energy computed by FPGA 
circuits. Three complex cell layers, each of 
which is tuned to disparities of near, fixating 
point and far, were prepared in parallel. As 
shown in Figure 3B, the maximum response 
appears in each corresponding disparity 
zone as the hand approaches the silicon 
retina. The neural image of disparity energy 
model is visualized in real-time. 

The simple cells are known to exhibit 
more-or-less linear receptive fields.5,6 From 
this point of view, it is thought to make 
sense to emulate the simple cell with analog 
chips without using the spike representa-
tion. However, computation in the brain 
significantly deviates from the linear rep-
resentation beyond the simple cell. We can 

therefore use digital technology to compute 
the nonlinear properties of the complex-cell 
receptive field, making it compatible with 
conventional machine-vision techniques. 
Another possible area to explore is compu-
tation using the spike representation. To-
gether, both of these approaches will further 
robot vision research. Which approach we 
use for a given application will depend on 
the type of visual cortex computation we 
need to implement. 

Kazuhiro Shimonomura and Tetsuya 
Yagi
Department of Electronic Engineering
Osaka University, Japan
E-mail:{kazu, yagi}@ele.eng.osaka-u.ac.jp
http://brain.ele.eng.osaka-u.ac.jp/in-
dex_e.html
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AudioSapiana: an auditory robot that uses 
salience and binaural hearing
AudioSapiana is a listening and walking 
robot designed by the audio group at the 
2005 Neuromorphic Workshop. We added 
ears to a RoboSapien robot from Wow-
Wee Entertainment to help it navigate in 
a difficult, obstacle-strewn environment. 
Previously, robots that oriented themselves 
towards a target beacon were designed to 
work in quiet environments. Audiosapi-
ana, however, was designed so she could 
navigate in a noisy, multi-source acoustic 
environment. 

The underlying algorithm was based 
on a model of human auditory perception: 
specifically, how listeners identify and attend 
to novel sounds. We combined a simple 
model of auditory saliency with a model 
of sound localization that allowed Audio-
Sapiana to attend to novel sounds, turn 
towards her mating call, and to navigate 
around obstacles. Our approach is novel 
in that information from both monaural 
and binaural pathways is integrated in a 
psychophysically-plausible way. This is an 
important step towards a model of how 
listeners understand speech in a cocktail-
party environment.2

Motivation
The processing architecture and time-scale 
for perceptual integration of monaural and 
binaural properties into primitive groups 
are still open research questions. One pos-
sible strategy that the brain may use is to 
analyze the location of each frequency chan-
nel separately and attend to the frequency 
components that have common interaural 
cues. Alternatively, the brain may initially 
group the auditory scene into different 
objects based on harmonicity, onset cues 
etc., and then determine the location of 
each object.  

Traditionally, speech recognition algo-
rithms that use both monaural and binaural 
information filter the signal first through a 
binaural pathway followed by a monaural 
recognizer. However, some psychophysical 
data suggest that monaural stream segrega-
tion precedes the binaural processing part 
when the signals are very short.1 This idea 
was implemented in our computational 
model. 

Computational model for segregation us-
ing monaural and binaural integration
Upon entering the ears, the ongoing sound 
signal is segregated into auditory objects 
by monaural pathways (see also Figure 

2). Simultaneously, the auditory scene 
is analyzed by a binaural processor that 
groups the scene into frequency patches of 
coherent location and similar onset. The 
monaural processor sends the estimated 
target frequency channels to the binaural 
processor. The latter determines the cor-
responding target locations, detecting 
spatial mismatches within the proposed 
frequency channels, and feeds these back 
into the monaural processor along with all 
non-target frequencies that originate from 

the estimated target location.
Only the first 10msec after the detected 

onset of the target are used for location 
estimation. This is advantageous in two 
ways. Firstly, it limits the processing time. 
Secondly, it avoids reverberation. Human 
listeners use a similar processing strategy. 
When localizing sounds in reverberant en-
vironments, more weight is typically given 
to transient than steady-state cues (the 
precedence effect).

The binaural processor also has a de-
cay-constant that smoothes the estimated 
target location across time. Perceptually 
this corresponds to the binaural sluggish-
ness effect.

In summary, the monaural and binaural 
pathways work together and enhance the 
estimated target frequency channels, allow-
ing more processing power of the central 
processor to be used for detailed analysis 
of the target signal.

Practical implementation
AudioSapiana was designed to navigate 
towards her mating call: an acoustic beacon 
provided by Andreas Andreou. Two small 
microphone ears were mounted on the 
robot’s feet. This unusual placement permit-
ted detection of acoustic shadows behind 
short obstacles as well as tall ones. 

The neuromorphic algorithms were 
implemented in MATLAB. The mating call 
detection was accomplished using Gaussian 
mixture models (GMMs) trained on some 
of the calls. Time-frequency bins with sig-
nificant acoustic-call energy were passed to 
the binaural system.

Audiosapiana navigated through the 
environment based on interaural level 
difference (ILD) cues based on a simple 
decision maker: for ILDs with a magnitude 
of 1dB or larger, the robot turned by 45° 
towards the louder ear. For smaller ILDs, 
the robot continued to walk straight. ILDs 
were averaged across the five estimated 
target frequency bands with the highest 
signal-to-noise ratio, and these bands were 
weighted by the average signal energy in 
each channel.

We chose ILD cues over interaural 
phase differences (IPD) for four reasons. 
Firstly, ILDs are easier to calculate. Sec-
ondly, the robot noise was mostly in the 
low-frequency range, therefore masking the 
IPDs. Thirdly, the different phase delays 

Figure 1. AudioSapiana on race day, ready 
to search for her mate.

Figure 2. Two models of monaural and 
binaural processing. AudioSapiana 
implemented the model on the right.
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High-speed and high-precision current 
winner-take-all circuit
A winner-take-all (WTA) circuit, which 
identifies the highest signal intensity among 
multiple inputs, is one of the most impor-
tant building blocks in neural networks, 
non-linear filters, and various fuzzy and 
neuromorphic systems. Many implementa-
tions have been proposed in the literature,1-5 
since the first WTA circuit was introduced 
by Lazzaro et al..1 The performances of all 
these can be measured in terms of speed, 
precision, and power consumption. While 
power consumption is very important in 
some applications, there are others where 
high speed and high precision are more 
important.

Here we describe a novel, high-speed, 
and high-precision current-mode WTA 
circuit. The circuit employs inhibitory and 
local excitatory feedback based on input 
currents average computation, and this en-
hances both the precision and speed of the 
circuit. Local excitatory feedback provides 
a hysteretic mechanism that prevents the 
selection of other potential winners unless 
they are stronger than that selected by a set 
hysteretic current. This circuit can be use-
ful for integration with others operating in 
the strong inversion region and supplying 
input currents of 3µA-50µA, as well as for 
sub-threshold applications with inputs of  
below 50nA.

Unlike previously-presented WTA cir-
cuits, ours achieves very high speed: 32ns 
for high measured currents of 3µA-50µA, 
and 34ns for simulated sub-threshold cur-
rents. This applies when a very small differ-
ence between two input currents is applied 
(30nA for high currents and 1.8nA for sub-
threshold applications). Such circuit perfor-
mance is the direct result 
of very strong feedback. 
However, this leads to 
higher power dissipation 
than existing low-perfor-
mance WTA circuits that 
operate in the sub-thresh-
old regime and optimize 
power consumption:1,4  
87.5µW for high input 
currents and 22.5µW for 
sub-threshold currents. 
The power consumption 
of our circuit can be sig-
nificantly reduced by de-
creasing feedback values, 
but this, in turn, degrades 
circuit performance.

Figure 1 shows cells 1 

and k (of N interacting cells) of the WTA 
circuit. Cell k receives a unidirectional input 
current, Iink, and produces an output volt-
age Voutk. This output has a high digital 
value if the input current Ik is identified as 
winner, and is low otherwise.

The WTA circuit operates as follows: 
the drains of the M2 transistors of all N 
cells of the array are connected to the drains 
of the M4 transistors by a single common 
wire with voltage Vcom. The circuit starts 
competition by applying Rst = ‘1’ for a 
short period of time. This way, the excit-
atory feedback ∆Iink and inhibitory feedback 
∆Iavgk are cancelled. Assuming that all N 
cells in the array are identical and Rst = ‘1’  
is applied, the current Icmp, through M4k, is 
equal to the average of all the input currents 
of the array, neglecting small deviations in 
the referenced input currents. Icmp is cop-
ied to M5k by the PMOS (positive-channel 
metal-oxide semiconductor) current mirror 
(M4k and M5k) and is compared with the 
input current Iink copied by the NMOS 
(negative-channel MOS) current mirror 
(M1k and M3k). An increase in input cur-
rent Iink relative to Icmp causes a decrease in 
Vxk value due to the Early effect. This way, 
during the reset phase, input currents of all 
cells are compared to the average of all input 
currents of the array, producing a unique 
output Vxk for every cell. The cell having 
the highest input current value produces the 
smallest Vxk voltage. 

With the completion of the reset phase, 
i.e. Rst = ‘0’, the excitatory feedback ∆Iink 
and the inhibitory feedback ∆Iavgk are 
produced. The Vxk node inputs to the gate 
of M6k PMOS transistor, thus the cell with 

smaller Vxk (highest input current) pro-
duces higher current I7k through M6k and 
M7k. This current is copied by the NMOS 
current mirror (M7k and M8k), creating 
the excitatory feedback ∆Iink. On the other 
hand, I7k is copied by the NMOS current 
mirror (M7k and M9k), resulting in inhibi-
tory feedback ∆Iavgk. The ∆Iink is added to 
the Iink flowing through M3k and ∆Iavgk is 
added to the average of all input current by 
connection M9k transistor to COM node, 
increasing the Icmp value. This way, every 
cell produces a new Vxk voltage value, ac-
cording to the comparison between current 
Iink+∆Iink and a new value of Icmp current. 
For the cell with the highest input current, 
the difference between Iink+∆Iink and Icmp 
grows: this decreases the Vxk value. At the 
same time, cells, with small input currents 
have their Vxk increased. The computation 
phase is finished when only one cell is iden-
tified as a winner, producing Voutk = ‘1’ 
at the inverter output. All other cells are 
identified as losers with Voutk = ‘0’.

A. Fish,* Vadim Milirud,† and Orly 
Yadid-Pecht*†
*VLSI Systems Center, Israel 
†Dept of Electrical and Computer Engi-
neering
University of Calgary, Alberta, Canada
E-mail: afish@ee.bgu.ac.il,
vmilirud@ucalgary.ca, oyp@ee.bgu.ac.il
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Biologically-inspired image processing for a 
robotic grasping task
Visual processing in mammals is adapted 
to their behavioral needs: likewise, in visu-
ally-guided robots, image processing needs 
to be suitable for a desired behavior. Thus, 
the function of the mammal brain may be 
a good guideline for choosing the right 
image-processing techniques for machines. 
In our work, we make robots learn through 
experience and thereby study which learning 
and image-processing techniques lead to a 
good performance for a given task. 

Here, we describe a study in which our 
goal was to make a robot arm grasp an ob-
ject presented visually.1 The robot learned 
to associate the image of an object with an 
arm posture suitable for grasping. Learning 
an association means that there are no world 
coordinates and there is no tedious calibra-
tion of the vision system, instead, the robot 
learns by randomly exploring different arm 
postures and by observing the appearance of 
objects put on a table. Though the emphasis 
of our work is on learning techniques, here 
we will focus on the image processing.

We used a robot arm with six joints 
and a gripper: the vision system was a 
stereo camera head mounted on a pan-tilt 
unit (see Figure 1). This setup was located 
behind a table, which was the operational 
space and which was visible to the cameras. 
In training, the robot placed a red brick on 
the table in random positions and, for each 
position, recorded an image of the scene 
after removing the arm. Thus, the training 
set contains corresponding pairs of grasping 
postures and object images.

An image can be interpreted as a point 
in a high-dimensional space (with the num-
ber of dimensions equal to the number of 
pixels). A mapping from such a space to an 
arm posture suffers from the so-called ‘curse 
of dimensionality’: the distance between 
pair-wise different images is almost con-
stant, and the orientation of the target gets 
lost under the dominance of the positional 
information.2 Therefore, the image must be 
pre-processed.

The processing technique that was 
eventually successful was inspired by the 
function of the visual cortex. The image 
processing was split into two parts: one for 
the object’s location and one for its orienta-
tion (see Figure 1). To decode the location, 
the image was first blurred and sub-sampled. 
Since here the target (the brick) was almost 
point-like within the camera image, the 
blurred image is like a population code of 
the brick’s position. In a population code, 

many neurons encode a parameter: such a 
code for the retinal location of a stimulus 
exists also in the primary visual cortex.3

To decode the orientation, image filters 
were used to extract edges in different direc-
tions: for each, we counted the edge pixels 
within the image. This sum was invariant 
of the brick’s position and was a measure 
of how close the brick was to a given ori-

entation. Posi-
tion invariance 
and orientation 
tuning are also 
properties of V1 
complex cells.4

The result-
ing visual infor-
mat ion could 
be used to first 
learn and then 
to recall the as-
sociation with 
an appropriate 
arm posture for 
grasping (Figure 
2). Specifically, 
the decomposi-
tion of the image 
processing into 
two parts and the 
use of population 
codes kept the 

grasping errors low.1,2 This robot experi-
ment demonstrated that brain functions can 
provide guidelines for robotic control, but 
also robots can help us to understand the 
brain. This is done by first demonstrating 
that certain (often hypothetical) functions 
actually work and then showing the advan-
tages of certain data-processing techniques 
in a behavioral context.

Heiko Hoffmann
Max Planck Institute for Human 
Cognitive and Brain Sciences
Munich, Germany
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Figure 2. Pattern association. Training patterns 
lie in the product space of arm posture and visual 
information. The density of the pattern’s distribution 
is modeled by a mixture of Gaussian functions (ellipses 
are iso-density curves). To map the visual information 
onto an arm posture, we define the output space as 
a constrained space anchored at the input. On this 
subspace, the highest local density gives the desired 
output.
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Figure 1. Shown is the information flow in the grasping task. The processing 
of the camera image is split into two parts. First, to extract position 
information, the image is blurred and sub-sampled. Second, to extract 
orientation information, four different compass filters (directional edge 
filters) extract edges in different directions. The sum of the white pixels in 
each of the four filtered images results in a histogram of edge distribution. 
This histogram, together with the blurred image, is associated with an arm 
posture that enables the robot to grasp the observed object.
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Reconstruction of retinal DRC
The basis of retinal DRC is the spatial 
feedback automatic-gain-control (fb-AGC), 
described in Figure 3. Here, the acquired 
image Ei is multiplied by the scalar forward 
gain K and fed into the first input of an im-
age pixel-wise multiplier. The output is then 
fed back into the multiplier’s second input 
after having passed through a linear spatial 
low pass filter (LPF, to average) and being 
subtracted from unity.

The average transmission (DC) of this 
model5 is

	
which is known as Michaelis’ equation. Its 
graph (see Figure 4) is known as Weber’s 
law.

The DR compression ratio (CR) is de-
fined as the output/input ratio for Ei = 1/K 
(the knee-point). We then ������have��: CR = K/2. 
The compression ratio is thus readily 
controlled through the parameter K. The 
fb-AGC gain for variations of low spatial 
frequencies (the ‘DC-gain’) is given by

 
The fb-AGC gain for local contrast varia-

tions (the ‘AC-gain’) is obtained by assuming 

Capture and display in wide dynamic-range 
imaging 
Introduction
It is commonly accepted1 that the dynamic 
range (DR) of an image, i.e. the image color 
definition, is equal to the image maximum 
signal-to-noise ratio (max SNR). We also 
know that the maximum amount of im-
age information is given by the product 
of resolution (cross-image definition) and 
color definition. Therefore, increasing the 
DR of images is by no mean less important 
than increasing their resolution. It is worth 
remembering however that DR and resolu-
tion cannot possibly be traded-off against 
each other, since they live in orthogonal 
sub-spaces of the image. Below, we analyze 
the two most commonly-used methods to 
increase dynamic range.

 
Purely logarithmic photo-response
Working with a purely log-response practi-
cally eliminates saturation altogether, thereby 
making the maximum signal unlimited. It 
can be shown however2 that to first order, 
the DR at the output of any 1-1 analytic 
mapping equals the DR at its input. 

To realize this in the log case we recall 
that the small-signal gain of the log function 
is inversely proportional to the average in-
put signal. This implies that, at this sensor’s 
output, a local contrast whose magnitude 
is usually small relative to the average lu-
minance, maintains a pretty-much constant 
SNR for all levels of average luminance. At 
the same time, however, such a local con-
trast becomes progressively ‘washed-out’ as 
the average luminance increases: a familiar 
and most undesirable property of the log 
transmission.

The multiple-exposure method
Multi-exposure (ME) means to apply shorter 
exposure times to originally saturated pixels, 
such that saturation is altogether avoided. 
This is generically illustrated in Figure 1, 
where the exposure periods are determined 
according to the simplest normalized series 
of

	

where k is a natural number. Note that the 
overall sensor’s gain to light is proportional 
to the exposure period. Therefore, to avoid 
contrast reversals, the gain of segment 2 must 
be elevated by a factor of 2, and so on.

The RMS of the camera shot noise, 
however, is proportional to the square root 
of the exposure time. Therefore the RMS of 

the camera output noise in the continuous 
transmission arrangement above is elevated 
by a factor of √2 in segment 2, a factor √3 
in segment 3, and so on. The DR of this 
arrangement is therefore given by

	
and the added DR in bits is

	
One can see that there is not much point in 
having the shortest exposure period less than 
a 1/3 of the default, since e.g., in 1/4-default 
the output noise is twice that of the default, 
thereby amplifying the minimum detectable 
local contrast by a factor of 2 and causing 
an ��������������������������������������������  already�������������������������������������  -significant ‘noise-washout’ effect. 
This limits the added DR of the ME arrange-
ment, in practice, to just a single bit.

The role of display DR
As it turns out,3 in normal indoor lighting 
we cannot see more than 5 to 6 bits per color 
(bpc) with most cathode-ray-tube, liquid-
crystal, and plasma displays. The effect of 
this bottleneck is demonstrated by the upper 
half of Figure 2, an 8bpc RGB picture Room 
(courtesy of Vincent Laforet, Photographer 
in Residence at the New-York Times) where 
the maximum amount of lost visual content 
due to the display is about nine bits per pixel 
(24 minus 15).

To get around the display bottleneck, 
we consider a similar situation that takes 
place inside our retina.4 The neural channels 
that carry all sensory information to the 
cortex cannot possibly support more than 7 
bits of DR. Nevertheless, the DR we actu-
ally perceive can easily exceed 30bpc. The 
mechanism that makes this possible has been 
analytically modeled5 and is called retinal 
dynamic-range compression (DRC).

Figure 1. Using multiple exposures to 
increase dynamic range.

Figure 2. The 8bpc version of Room before 
(upper half) and after (lower half) retinal 
dynamic-range compression to 5bpc.

Shefer, continued on p. 11
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that put the computer network in a funny 
state. After getting the system functional 
again, the robot headed out, but did not 
operate properly. (There is video of the 
robot elegantly completing the course soon 
after the competition was over. See: www.
theredplanet.co.uk/Telluride2005)

RoboCup (Hisham Abdalla) was a hand-
built robot that detected ultrasonic signals 
transmitted by two beacons in the room 
to estimate x-y position in the room. This 
allowed the system to virtually ‘sense’ the 
direction of the finish line. A prominent fea-
ture of this robot was the plastic cup used to 
hold up one of its ultrasonic transducers.

It (Chris Twigg and David Graham) 
was a small toy car on which two binary 
whiskers were installed. This car achieved a 
high speed and would turn when one of the 

Horiuchi, continued from p. 3

whiskers ran into an obstacle. When both 
whiskers are deflected, a reverse command 
was issued after some delay. The car man-
aged to careen off of two obstacles and strike 
a wall extremely close to the finish line.

And the winners were…
The two main prizes, provided by K-Team 
and WowWee, were won by Garcia, the 
Antennanator, for the ‘Coolest Approach 
Attempted’ award, and by Kave/Koala, for 
the ‘Most Successful Robot’ award. Addi-
tional awards were given for the following 
categories: ‘Fastest Entry’ was It; ‘The Rube 
Goldberg Contraption’ was RoboCup; ‘Best 
Looking Robot’ was AudioSapianna; ‘Most 
Pathetic Performance on the Field of Battle’ 
was RoboSensation; and the ‘Most Integrated 
Robot’ was RoboSapianna.

Closing thoughts
Overall, we feel that the robot race was a 
great success in drawing the interest and ef-
forts of many of the participants. This year 
we saw the emergence of the RoboSapien 
as a new robot platform and the effective 
use of wireless network devices in various 
systems. We also received lots of feedback 
that perhaps too much of everyone’s 
time was spent in making the most basic 
hardware operational, leaving less time 

for algorithm development and systems-
integration issues. In future competitions, 
we intend to provide more infrastructure 
and ready-to-use robotic and development 
platforms to encourage the use of common 
locomotion platforms and communica-
tions. We encourage all of you to contact 
us about your thoughts on the competition 
and ways to make this an even better event 
for the future.

Timmer Horiuchi and Giacomo
Indiveri*
Department of Electrical Engineering
Institute for Systems Research 
Neurosci. and Cognitive Sci. Program
University of Maryland
College Park, MD
*Institute of Neuroinformatics 
Uni/ETH Zurich
Zurich, Switzerland
E-mail: timmer@isr.umd.edu

Noah J. Cowan.

in the microphones caused an IPD bias 
that we could not remove with our limited 
recording equipment. Lastly, for navigation 
of AudioSapiana through the maze, ILD 
cues are advantageous because they contain 
information about the acoustic shadows 
from the obstacles.

In the real-time implementation, Audio-
Sapiana listened for her mating call, made 
a binaural decision, and then moved a few 
steps towards the left, right or straight. 
While moving, AudioSapiana listened 
again, and repeated the process. AudioSa-
piana did not have any route-planning or 
other artificial intelligence. Instead, when 
she bounced into an obstacle, she backed up 
a few steps (a pre-programmed feature of 
RoboSapien) and listened again for a new 
direction. This strategy proved successful, 
enabling AudioSapiana to consistently find-
ing a path to her mate.

In the future, the audio team hopes to 
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investigate more realistic implementations 
of the auditory-saliency binaural model. We 
intend to close the feedback loops, and study 
how this model fits human perception.

The people listed below all contributed to Audio-
Sapiana’s success.
• �Dave Anderson (Gatech): Noise suppression 

model.
• �����������������������������������   Jay Kadis (Stanford): Microphones.
• ���������������������������������������    Jonathan Tapson (Cape Town): Hardware 

hacking.
• ������������������������������������������      Mark Tilden (WowWee): Father of our girl.
• ��������������������������������������������     Mounya Elhilali (Maryland): Crew chief and 

audio wrangler.
• �������������������������������������   Nima Mesgarani (Maryland): Wireless 

audio.
• ����������������������  ���������������� Sue Denham (Plymouth)—Salient object 

detector
• ������������������������������������������Shihab Shamma (Maryland): Random (mostly 

great :-) ideas.
• ��������������������������������������    Steven David (Maryland): Control and 

Kave/Koala.

hardware.
• ��������������������������������������    Tara Hamilton (Sydney): Wireless and 

hardware.
• �������������������������������������������     Toby Delbruck (ETH): Wireless and control.
• �����������������  ����������������������������  Malcolm Slaney (Yahoo!): Primitive auditory 

front end.
• �����������������������������������������    Antje Ihlefeld (Boston Univ.): Binaural 

Model.

Antje Ihlefeld and Malcolm Slaney*
Department of Cognitive and Neural 
Systems
Boston University, Boston, MA
*Yahoo! Research, Sunnyvale, CA
E-mail: antje1@gmail.com, malcolm@
ieee.org
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We have all heard the quote, “Revolutions 
do not happen overnight”. Indeed, the 
USB revolution was years in the making: 
but soon after the USB (universal serial 
bus) board fired its first spike, nearly every 
member of our lab had abandoned their 
chip-testing setups to join the insurgency. 
This custom tool had ousted logic analyzers, 
pattern generators, digital I/O cards, and 
other bourgeois equipment. My comrades, 
we wish to spread the revolution. 

We have two aims in this article: first, 
we want to demonstrate that, with the right 
components and driver, USB 2.0 offers a 
high-performance (7 million spikes/sec), 
portable (compatible with any PC), inex-
pensive (under $500 in parts and printed 
circuit board), and flexible (coded in C++) 
computer interface. Second, we want to 
describe how this interface has revolution-
ized the way in which we interact with 
our neuromorphic systems. Our obvious 
enthusiasm stems from the sentiment that 
our chips are no longer limited by the sur-
rounding technology, but instead by our 
own creativity. 

Hardware 
To achieve the interactivity that we envi-
sion, the USB link must seamlessly integrate 
with our neuromorphic chips. A typical 
neuromorphic chip with 10,000 neurons1 
can demand bandwidths exceeding 500,000 
address-events2/s (considering both the 
transmitter and receiver), and proposed 
multi-chip systems3 can increase this de-
mand by ten-fold. In theory, USB2.0 can 
support 480Mb/s: to blast address-events 
at these rates, we must enlist the appropri-
ate chip set.

We chose the USB Cypress FX2 trans-
ceiver chip because its configurable datapath 
allows us to meet our performance require-
ment of streaming millions of address events 
per second. Specifically, we can bypass the 
FX2’s on-chip microcontroller (through a 
firmware assembly configuration file), which 
would otherwise introduce a devastating 
bottleneck for real-time data transfers. We 
use a pair of 4×256×16 bit (quadruple buff-
ered) FIFOs (first in, first outs) on the FX2 
for streaming address events to and from 
our chip (one for each direction). 

The transfers are asynchronous and we 
match the address-event representation pro-
tocol to the FX2’s protocol using a CPLD 
(complex programmable logic device from 
Lattice Semiconductor). And indeed, we real-

ize a high-performance bidirectional link, 
achieving 7 million 16bit events per second, 
or 112Mb/s (see Figure 1). 

Software
With our high-performance USB2.0 link, 
we now have the ability to stream spikes 
(and other data) in real-time between a 
neuromorphic system and a software appli-
cation (GUI, graphical user interface): the 
challenge is ensuring that the software can 
keep up. Since coding drivers is anathema 
to us hardware guys and gals, we decided 
to use the commercial USB driver from 
Thesycon. Naturally, Thesycon is not the 
only game in town, but by following their 
Microsoft Visual C++ examples we were 
able to integrate real-time events into our 
software apps in no time. Essentially what 
Thesycon provides is the ability to probe 

the status of the FX2’s FIFOs (both input 
and output). For instance, when an input 
FIFO buffer is full, the driver copies it to 
memory. At low event rates, this takes a 
while, so the CPLD injects timing events 
every 50µs. For the majority of the time, 
however, our GUI is free to process, plot, 
and save spike data. 

The GUI enables us to visualize chip 
activity, processing and plotting incoming 
spikes in real-time. Visualization, however, 
has the potential to hold up the link if FIFOs 
fill up faster than the screen can update. 
For this reason, we use openGL (the open 
graphics language), which plots extremely 
quickly.4 Of course, some of the more 
advanced plotting features (e.g., in three 
dimensions) are still too slow: it is not a gen-
eral panacea. In practice, openGL suffices 
for the two dimensional plots we use. 

¡Viva la revolución!
The USB2.0 interface has become an essen-
tial part of testing, visualizing, and interact-
ing with the neuromorphic systems in our 
lab. We briefly highlight some of the systems 
we have visualized using this link in Table 
1. Note that, for each project, the GUI was 
specifically tailored to monitor the essential 
computation in that system. For instance, 
if we are interested in the phase-locking 

LABORATORY NOTES

The USB revolution

Figure 1. USB 2.0 communicates between a 
PC and a neuromorphic system at 7 million 
16bit events per second (duplex).

Figure 2. The cochlear nucleus chip responds to sound encoded by auditory nerve spikes (inputs 
spikes). Chip activity displays neurons that fired recently according to chip layout (physical space) 
and cochlear mapping (frequency space). Spike rasters display 100 trials of a neuron’s spike times 
during a 50ms stimulus, while phase histograms quantify spike-time precision.  The selected 
bushy cell (address 69,0) phase-locks better than its inputs: its phase-histogram is tighter.

Merolla, continued on p. 11
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property of neurons, we can directly plot a 
metric that quantifies phase-locking: the task 
of finding neuron parameters that enhance 
phase-locking can now occur interactively 

(see Figure 2). The ostensible real-time ad-
vantage of neuromorphic systems over other 
modeling techniques is now apparent. 

The high-performance USB2.0 interface 
we have described 
here has revolu-
tionized the way in 
which we interact 
with our neuromor-
phic systems. Our 
strategy for design-
ing this interface 
was to optimize the 
hardware so that the 
much of the compu-
tational burden was 
transparent to the 
software. This strat-
egy has paid off, as 
evident from the 
rapid development 
(three weeks) of the 
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that, for such variations, the LPF��������  output 
remains constant. Denoting this constant 
by  we have

	

from which we get

Taking the quotient (GAC /GDC ) as a 
measure of the detail enhancement of the 
retinal DRC, we see that the amount of this 
detail enhancement, or the ‘effective visual 
acuity’ increases linearly with the average 
luminance of the viewed scene: a well known 
property of human and animal vision. The 
lower half of Figure 2 is Room after retinal 

DRC to 5bpc.

Conclusions
On the capture side of wide-dynamic-range 
imaging, we have demonstrated that dealing 
with saturation alone cannot significantly in-
crease the DR of image sensors. We therefore 
conclude that this can only be achieved via 
significant noise reduction. On the display 
side of the problem, Figure 2 above dem-
onstrates how retinal DRC can increase the 
potential number of perceived distinguished 
colors—by a factor of 512 in the current 
example—and shows how this affects our 
watching experience.

Thanks to Dr. Jacques Benkoski for his helpful 
remarks.

Moti Shefer
Trusight Ltd.,
Haifa, Israel
E-mail: moti@trusight.com
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Figure 4. The Weber’s law curve.

Table 1: Doing it on the fly5
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five customized real-time applications.
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Revolutionary Chip Visualization (all real time)

Bo Wen Inner ear Cochleagram (spectrum vs. time) 
with real sound input

Brian Taba Axon Guidance Activity and histograms of ON-
OFF retinal inputs for balanced 
topographic refinement

John Arthur Hippocampus Rasters and chip activity phase-
coded in color

John Wittig Jr Cochlear Nucleus Rasters and histograms showing 
phase locking to sound wave-
forms.

Paul Merolla Visual Cortex Orientation maps generated with 
drifting gratings
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A joint project between my laboratory at the 
Hong Kong University of Science and Tech-
nology, Ning Qian at Columbia University, 
and Meihua Tai at the Polytechnic Univer-
sity (both NY) has been set up to develop 
an active binocular-vision system where 
visual control is based upon the distrib-
uted populations of cortical neurons. This 
system consists of a six-degree-of-freedom 
binocular-vision head and custom hardware 
for rapidly computing, communicating and 
combining the outputs of retinotopic maps 
of model cortical neurons.

The development of neuromorphic sys-
tems for cortically-inspired visual processing 
leads naturally to the incorporation of active 
gaze control. For example, the disparity-se-
lective model neurons that are constructed 
using the disparity energy model are only 
accurate within a small spatial range due 
to effects such as phase wraparound. As a 
result, the active control of camera gaze can 
bring different parts of the image into the 
required disparity range. Gibson anticipated 
this when he argued that perception arises 
through an active process that involves 
adjustments of the perceptual organ.1 Ap-
propriately, he likens active senses to ten-
tacles or feelers. Although the visual senses 
have the potential to acquire environmental 
information purely passively—as evidenced 
by our ability to engineer algorithms using 
stereo heads with fixed camera parameters 
to extract environmental depth—there are 
many computational advantages of incor-
porating active gaze control into perceptual 
processing.2

Our binocular active-vision head (see 
Figure 1) has three degrees of freedom for 
each eye: horizontal and vertical rotation, 
as well as rotation around the line of sight 
(torsion). Because the most rapid eye move-
ments are associated with saccades, during 
the design phase we took care  to ensure that 
saccadic eye movements performed by the 
head can match or exceed those observed 
in primates. However, since it appears that 
visual perception is shut down during a 
saccade, we were not particularly concerned 
with matching exact trajectories.

The addition of torsional control 
distinguishes this binocular vision head 
from most of those previously developed. 
In humans, the eyes cannot only rotate 
horizontally or vertically, but also within 
about 10° around the line of sight. Active 
neural control of this torsional component 
may be important in reducing the motion 

of epipolar lines to enable stereopsis with 
smaller retina-fixed disparity search zones,3 
as well as in quickly stabilizing the retinal 
image during gaze shifts where both eyes 
and head move.4

The system also includes custom-de-
signed hardware for computing the outputs 
of retinotopic arrays of artificial neurons 
(maps). These model the responses of 
populations of neurons within the visual 
cortex that are tuned to respond to dif-
ferent combinations of spatial/temporal 
frequency, orientation, and binocular 
disparity. For maximum expandability, we 
adopted a modular architecture. Compu-
tation is distributed among a number of 
identical boards, each of which (see Figure 
2) contains a high-speed fixed-point digital 
signal processor (DSP) chip (the TI 6414 
DSP) operating at 600MHz for computing 
the responses of the model neurons. Intra-

board communication is handled by a Xilinx 
Spartan III field-programmable gate array 
(FPGA) chip connected with low-voltage 
differential signalling serializers/deserial-
izers. Each board supplements the on-chip 
memories of the DSP and FPGA with 
8MB of synchronous dynamic random 
access memory (SDRAM) and 4MB of 

static RAM.
On these boards, computation and 

communication is similar to that previously 
developed for neuromorphic models of 
the retinotopic arrays of neurons tuned to 
different orientations in the primary visual 
cortex. In these earlier implementations, 
computation was performed using custom-
designed mixed-signal analog-digital chips.5 
However, our current system uses digital 
processing to enable rapid reconfiguration 
of the processing performed by each board, 
sacrificing low power consumption for en-
hanced flexibility. This enables more rapid 
experimentation with different models of 
bio-inspired processing. However, because 
the structure of the overall system is similar 
to that used by multi-chip neuromorphic 
networks, we expect that the processing 
performed by each board will be easily 
mapped onto mixed-signal neuromorphic 
VLSI (very large silicon integration) chips. 
Thus, we view this system as an intermedi-
ate step between software simulations on a 
standard personal computer and multi-chip 
networks of custom-designed chips.

The project described here is supported by 
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electronic hardware and the active-vision head 
described here.
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Development of a cortically-inspired active 
binocular-vision system

Figure 1. The six-degree-of-freedom active 
vision head.

Figure 2. One of the boards used to compute 
cortical maps.


