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Research over the last forty years has shown 
that the spinal cord, even when completely 
disconnected from the brain, retains the 
ability to produce rhythmic patterns of 
output that can control relatively simple 
actions such as walking. This capacity, 
fi rst demonstrated in the cat, could not be 
demonstrated in humans. However, more 
recent evidence suggests that the human 
spinal cord can control leg muscles with 
walking-like patterns even when completely 
disconnected from the brain.1 This discov-
ery promises exciting advances in rehabilita-
tive technologies for individuals with spinal 
cord injury. 

Current research in therapy after spinal 
cord injury is studying the benefi t of weight-

Neuromorphic approaches 
to rehabilitation

bearing stepping on regaining motor func-
tion. In a typical setup, the injured patient 
is partially supported by a harness and held 
over a moving treadmill: therapists on ei-
ther side of the patient assist with motion 
and foot placement. Although the patients 
can produce the basic pattern of stepping, 
they often lack the ability to pull up their 
foot prior to placing it at the beginning of 
a stride, a defi cit referred to as foot drop. 
Assistance in this portion of their gait is 
provided by therapists, but it may be desir-
able to have an automated sensing-actuation 
system to provide this assistance.

It is generally thought that neural oscil-
latory circuits in the spinal cord, called cen-
tral pattern generators (CPG), underlie the 

production of rhythmic 
motor behavior such as 
locomotion.2 To assist 
recovery, it may be de-
sirable to build a hybrid 
circuit containing the in-
jured CPG and artifi cial 
sensing, computation, 
and actuation elements 
to attempt to correct for 
CPG defi cits after injury. 
During the 2004 work-
shop in Telluride, we 
considered the sensing 
and computation com-
ponents of the artifi cial 
CPG (see Figure 1). 

It has been shown 
that partial weight-bear-
ing is extremely impor-
tant for eliciting motor 
patterns in spinal-cord 
injured individuals, sug-
gesting pressure input 
from the foot is a key 
component of normal 
locomotion. Taking our 
lead from this result, 
we used force-sensitive 
resistors (FSR, Interlink 
Electronics) placed on 

the bottom of each foot to measure con-
tact pressure (Figure 1a). Output from the 
FSR was read into a computer for on-line 
processing (Figure 1b).

We used a single oscillating integrate-
and-fi re neuron model, with the stride fre-
quency as its single input to the neuron, to 
simulate the CPG (Figure 1c). The goal was 
to use the CPG output, which was also at 
the stride frequency, to estimate the timing 
of ankle actuation so that foot drop could 
be avoided. It was, therefore, important to 
have the CPG oscillation at the appropri-
ate phase of the step cycle. To accomplish 
this, the neuron had its voltage set to half 
of threshold value at the time of each foot 
strike. Since the neuron was tuned to have 
a voltage threshold of 1, this reset ensured 
that the neuron would fi re a spike halfway 
through the step cycle. As with biological 
CPGs, the occurrence of such a spike could 
signal the actuation of a particular joint. 
Thus, since this circuit generates an artifi cial 
CPG that produces spikes at accurate points 
during the step cycle, its output could be 
used to actuate the ankle through external 
pneumatic actuators, and thus reduce the 
problem of foot drop (Figure 1d).

The artifi cial CPG neuron that we have 
studied represents the simplest possible 
implementation of a hybrid biological/
neuromorphic CPG. It is likely that more 
realistic CPG model circuitry will allow 
the integration of more complex cues from 
the patient's gait pattern, and may be able 
to correct gait abnormalities more fully. It 
will be interesting to explore the potential 
of artifi cial CPG circuits, acting in parallel 
with their injured biological counterparts, 
for infl uencing plasticity and recovery in the 
injured nervous system.
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Figure 1 (a) The force-sensitive resistor (FSR) used in this 
application. (b) Voltage-divider circuit with FSR, showing that 
power and data acquisition were provided by a laptop computer, 
and components were placed in a backpack allowing the user to move 
freely. (c) The central pattern generator (CPG) neuron received 
stride frequency as direct input, step time as a reset, and put out 
spikes in steady state with the desired frequency and phase relative 
to the step cycle (step times shown as vertical lines). (d) Future work 
would involve coupling the CPG neuron to an actuator capable of 
lifting the foot.
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Word-serial address-event 
transceiver layout compiler
Neuromorphic systems use multiple neuron 
arrays to implement large systems that are 
both modular and scalable. These arrays, 
which may be on separate chips, communi-
cate with each other using the address-event 
representation (AER), where each neuron in 
an array is assigned a unique binary address 
that is encoded and transmitted to other ar-
rays when it spikes.1 To facilitate the design 
of these neuromorphic systems, our lab has 
designed software for automatic placement 
and routing of AER transceiver circuitry and 
neuron arrays, and for padframe generation, 
pad routing, and design verifi cation.

Our layout compiler—ChipGen, imple-
mented using Tanner Inc.’s L-Comp tool—is 
continually modifi ed to incorporate the lat-
est developments in AER communication. 
Several people, including Kwabena Boahen, 
Kareem Zaghloul, and Brian Taba, have 
contributed to its development over the 
years. In its present incarnation, ChipGen 
utilizes word-serial address events, where 
the transmitter encodes all of a row’s events 
in a single burst: the row’s address followed 
by a column address for each event.2 Simi-
larly, the receiver decodes the burst into a 
row-wide data-word that is written to the 
selected row.3

In addition to compiling AER transmit-
ter and receiver circuitry, ChipGen provides 
the option to include a scanner for the con-
tinuous sensing of currents through a clock-
driven multiplexor. A more sophisticated 
scanner that outputs signals to a standard 
VGA monitor4VGA monitor4VGA monitor  may also be selected, in lieu 
of the transmitter. 

To use ChipGen, the designer must fi rst 
create a metapixel, which ChipGen tiles to 
create a neuron array that will use AER 
to communicate with others within the 
larger neuromorphic system. The metapixel 
contains a user’s custom-designed neural 
model as well as standard circuitry for AER 
communication. This neural model can 
range from a single spiking neuron to a 
complex arrangement of dendrites, somas, 
and both excitatory and inhibitory synapses. 
A multiplicity of neurons is supported by 
assigning more than one row or column per 
metapixel.

The fi nal step in the chip-design process 
is layout verifi cation. To this end, we have 
developed a netlist generator, NetGen, that 
creates a SPICE netlist of the chip. This can 
then be compared to a netlist extracted from 
the layout in a procedure known as LVS 
(layout versus schematic). Starting with the 

original version written by Kai Hynna a few 
years ago, NetGen also continues to evolve 
in step with ChipGen. 

We compiled ChipGen into a dynami-
cally-linked library (DLL): it is loaded as a 
user programmable interface (UPI) macro 
in Tanner’s L-Edit Pro version 11.5 Our 
cell library is currently laid out in MOSIS 
SCN_DEEP (deep submicron) rules. Taiwan 
Semiconductor Manufacturing Company’s 
(TSMC) 0.25µm CMOS process is the most 
advanced technology we have used to fabri-
cate chips so far. NetGen is implemented as a 
stand-alone windows executable program. 

Using ChipGen and NetGen, the chip 
designer can take their neural model and 
create a verifi ed chip layout within minutes. 
Both of these programs, in addition to our 
AER cell library, are freely available upon 
request. More information can be obtained 
from our website.6 In the near future, we 
plan to host a hands-on workshop that will 
go through the process of chip layout and 
design verifi cation.

Joseph Lin
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E-mail: linjh@seas.upenn.edu
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Insects are supremely successful biological 
autonomous systems that, despite their 
diminutive size, have survived in the real 
world and adapted to changing physical 
environments for more than 400 million 
years. Insects, which were highly successful 
long before the existence of mankind, are 
today the most species-rich and diverse of 
all animal taxa. Incorporating a vast array of 
sensors—far beyond the fondest dreams of 
modern roboticists—fl ying insects smoothly 
fuse the output of multimodal sensor ar-
rays to achieve complex fl ight and landing 
trajectories. At the same time, they adapt 
robustly to sensor failure, and all of this 
is accomplished with a brain of around a 
million neurons.

With the goal of endowing an autono-
mous robot with a robust visual-tracking 
system, we have taken inspiration from 
the visual system of the fl y. Male fl ies are 
extremely profi cient at tracking females in 
fl ight. The exact mechanisms for this are 
as yet unknown, but fi gure detection (FD) 
cells in the brain of a fl y have been identi-
fi ed that are sensitive to the motion of small 
objects,1 and these cells have been suggested 
to underlie such tracking behavior. A com-
putational model of these cells was proposed 
to describe the underlying neuronal archi-
tecture,2 based on relative motion of the 
target and background features.

robotic target tracking: with promising 
initial success.

Charles M. Higgins and Vivek Pant
Electrical and Computer Engineering
ARL Division of Neurobiology
University of Arizona
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We put this computational 
model of fl y vision, for the fi rst 
time, in a simulated closed-loop 
tracking situation, and discovered 
that the model—which was de-
vised to agree with biological data 
taken from fl ies—required some 
modifi cations to accomplish the 
tracking task.3 Some biologically-
plausible modifi cations, made to 
properly account for the expansive 
optical fl ow encountered during 
forward translation, ensured that 
the simulated fly never turned 
away from a target and strength-
ened the response to small moving 
targets. The result was excellent 
tracking performance even in clut-
tered visual scenes (see Figure 1). 
In fact, it turns out that the model 
actually requires a strong visual 
motion signal from background 
features in order to strongly re-
spond to a contrarily moving target.

After our success in simulation, we 
proceeded to design a hardware implemen-
tation of the model for target tracking (see 
Figure 2). Despite the complexity of the 
model, the required computations can be ac-
complished completely in continuous-time 
analog circuitry by the cooperative activity 
of two vision chips representing the two 

compound eyes of the fl y. No 
microcontroller is required to 
process the output of this two-
chip vision system in order to 
steer the robot towards mov-
ing targets. Each pixel of these 
VLSI vision chips (see Figure 
3) includes a low-level visual 
motion detector and several 
stages of analog circuitry to 
compare local motion signals 
with the wide-fi eld motion re-
sponse in order to respond only 
to small moving targets.

Using an LCD (liquid-
crystal display) visual stimulus, 
we have been able to show that 
the response of the chip to 
moving targets of varying 
size is quite comparable 
to that of the fl y FD cells 
upon which the computa-
tional model was based.4

We are currently experi-
menting with the use of 
this hardware system for 

Visual target tracking based on fl y
fi gure-detection cells

Figure 2: High-level hardware architecture of the tracking 
model implementation. Two vision chips with divergent 
fi elds of view interact via analog currents to produce a 
tracking output used to guide the robot. 
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Figure 1: The path of the simulated fl y as it tracks a moving 
object during a simulation experiment. Circles around the 
periphery are fi xed background objects. The solid line shows 
the path of the fl y, and the dashed line the path of the moving 
target. As the fl y moves, the raw visual motion it detects is 
completely dominated by the background objects, and yet it 
tracks the target by its relative motion.
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From the very inception of the fi eld of neu-
romorphic engineering, a signifi cant part 
of the community focused its efforts on the 
development and the implementation of 
arrays of silicon neurons for the rapid pro-
totyping of neural networks. One of the fi rst 
successful silicon neuron implementations 
was proposed by Mahowald and Douglas 
in the early nineties.1 This circuit generated 
spikes that had striking similarities with the 
ones produced by real cortical neurons, as it 
implemented a ‘conductance-based model’ 
that emulated the various ion currents re-
sponsible for producing nerve impulses. 
This approach, still being pursued by vari-
ous groups today,3-5 captures many details 
of how a real neuron works. However, it 
also requires the ability to successfully tune 
a large number of parameters, and typically 
takes up a large area of silicon real estate 
(due to a large number of transistors, large 
capacitors, or both).

Alternatively, a less sophisticated but 
smaller type of circuit design, is based on the 
integrate-and-fi re (I&F) neuron model. This 
type of circuit, thanks to its smaller silicon-
area requirements, has been frequently used 
both to implement large arrays of neurons 
on single chips, and in conjunction with the 
address-event-representation (AER) com-
munication infrastructure, for transmitting 
spikes (events) among different chips. (This 
has been explained in the previous issue of 
the Neuromorphic Engineer6 and elsewhere7-

8.) One of the fi rst implementations of an 
I&F neuron model was the ‘axon-hillock’ 
circuit, originally proposed by Mead et al..2

Every year, the Neuromorphic Engineer-
ing workshop in Telluride, Colorado, allows 
scientists from many different disciplines 
and parts of the world to come together to 
discuss—and try to engineer—ideas into 
robotics and/or neural prostheses and other 
purposes. This year, four different chips were 
used for different tasks. One of these8 was an 
application-specifi c chip, requiring AER for 
communicating with the outside world. The 
other three chips9,10,12 were more general-
purpose integrate-and-fi re neurons, where 
the fi rst two used AER for communication 
with the outside world, and the second had 
an output for each neuron.

Here we focus on the last type of device 
(see Figure 1), the main purpose of which is 
to carry out several projects for implement-
ing networks of I&F neurons with different 
(reconfigurable) types of architectures, 

operating in real time and able to interface 
with control signals for appropriate motor 
actuation. The chip, an evolution of a previ-
ous version,11 is made up of ten integrate-
and-fi re neurons specifi cally designed to be 
used in a central pattern generator (CPG) 
configuration for locomotion of robotic 
bipeds. Each neuron has 19 synapses, of 

which eight allow external circuitry or 
sensory information to modify the output 
spike trains, ten allow each neuron to feed 
back to all the neurons on the chip, and one 
synapse is used to provide a tonic drive for 
the neurons. Each neuron/synapse pair can 

Prototyping neural networks for legged 
locomotion using custom aVLSI chips

Tenore, continued p. 8

Figure 2: Two of the many possible central-pattern-generator networks implemented on the chip 
to allow the robot to walk in an open-loop system. The Snappy robot is also shown.

Figure 1. Chip micrograph: the modifi cation of a neuron/synapse/weights triplet occurs through 
the use of shift-registers. 
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program to demonstrate the fi ltering capa-
bilities of the distributed fi lter network. The 
MATLAB script visproc generates a fi ctitious 
image with some geometrical features. Noise 
is added to the system to evaluate the robust-
ness of the algorithm. The added noise was 
about 5% of the maximum pixel value. The 
image is converted in address-event by the 
MATLAB script: each pixel’s intensity is en-
coded as a sequence of spikes, the frequency 
of which is proportional to the pixel value 
in the image.

Figure 4 shows the simulation result. The 
top left image is the original address-event 
image generated by the MATLAB script. 
The top-right, middle-left, middle-right and 
bottom pictures are the result of the vertical-, 
horizontal-, 135°-  and 45°-oriented fi lters 

respectively.
The fi lters are implemented 

using projective fields: as an 
event is produced by the address-
event image sensor, it is commu-
nicated to the fi lter motes. Once 
received by each specifi c mote, 
it is duplicated multiple times in 
the shape of the desired template. 
For example, for a vertically-ori-
ented fi lter, an address in the (x, ented fi lter, an address in the (x, ented fi lter, an address in the (
y) coordinates will be mapped to 
three addresses: ((x, ythree addresses: ((x, ythree addresses: (( ), (x, y ), (x, y ), ( – 1), 
(x, y (x, y ( + 1)). The values of the pix-
el at these addresses will thus be 
incremented by 1. This technique 
is called projective fi eld because 
it makes a prediction about the 
direction of the image contour. 
Once a fi xed number of events 

The availability of commercial sensor net-
works has opened up interesting applications 
for neuromorphic engineers.1,2 The address-
event data-stream representation, originally 
conceived to allow the exchange of informa-
tion between processing nodes organized 
in a network, can now be used to convey 
information from sensor network process-
ing nodes to multiple receiving nodes. This 

information can be analyzed and extracted 
while hopping between network nodes3 in a 
way that is very similar to biological neural 
networks.

We intend to demon-
strate here the capabilities 
of this kind of sensor 
network by implement-
ing network-distributed 
fi ltering modules to ex-
tract features from an 
address-event image sen-
sor. The distributed fi lter 
network implementation 
is illustrated in Figure 1. 
A transmitter mote (Tx) 
is connected to an ad-
dress-event camera and 
sends image data to the 
distributed fi lter motes, 
each of which implements 
one fi lter template (here 
with vertical, horizon-
tal, and 45° orientation). 
The fi lter motes send the 
filtered version of the 

image to the receiver mote (Rx) for further 
processing.

The transmitter wireless image sensor 
was developed at Johns Hopkins University 
using a custom address-event image sensor 
we designed4we designed4we designed  (the ALOHA image sensor) 
and commercially-available sensor network 
nodes (see Figure 2).5 The ALOHA  sensor 
is a 32×32 pixel array that converts light in-

tensity into a frequency 
of events. The address 
of the pixel is read by 
the sensor network node 
and transmitted using 
a low-bandwidth radio 
link to a host computer. 
During the development 
phase, we demonstrated 
a wireless imaging ca-
pability with limited 
power consumption: 
the system operates with 
two AA batteries and 
can run for over five 
days. The image sensor 
reported good image 
quality even at very low 
bit rates and frame la-
tency as low as 1s (see 
Figure 3).

A fi ltered version of 
the original image can 

be obtained by transmitting a series of pulses 
representing the pixel intensity through an 
orientation-hypothesis projection fi lter. We 
implemented a proof-of-concept Matlab 

A distributed network for visual processing

Figure 3. Figure example collected by the 
wireless image sensor and displayed on a 
receiving host computer.

Figure 1. Distributed fi lter network: a transmitter mote (Tx) is 
connected to an address-event camera, sending data to the distributed 
fi lter motes. Each of these implements one fi lter template, here at vertical, 
horizontal and 45° orientation. The fi lter motes send the fi ltered version 
of the image to the receiver mote (Rx) for further processing.
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Culurciello et al., cont. p. 8
Figure 2. The transmission (Tx) mote connected to the address-event ALOHA 
camera.
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onto the electrode patches.  Figure 1 shows 
example signal data from a forearm muscle 
being rapidly twitched. A gain of about 1000 
was used here. In our fi nal version, two sets 
of electrodes were placed vertically over the 

lower back muscles (the erector 
spinae muscle group) about 
1.5in (4cm) from the spine.

Following analog amplifi ca-
tion, we sampled the waveform 
using a multi-channel Measure-
ment Computing USB (univer-
sal serial bus) analog-to-digital 
converter (ADC) at 500 sam-
ples/sec in 100ms blocks. This 
USB device included digital out-
puts as well. A laptop computer 
running MATLAB was used 
to control data acquisition and 
provide software control. The 
waveforms were subsequently 
rectifi ed, low-pass fi ltered and 
compared against a level thresh-
old. We now had two digital 
channels that indicated when the 
left, right, or both back muscles 
were contracting.

To test the feasibility of 
controlling a robotic device us-

ing the EMG signals, we built a prototype 
robotic tail. Its core consisted of a light, 
fl exible, steel cable that was easily bent yet re-
sisted compression. This cable was fi tted with 

eight circular fl anges through 
which three parallel strings 
(Spectra Cable 0.030in) were 
threaded through holes on the 
edges. Applying tension to one 
string effectively bends the as-
sembly as the effective length 
of this string reduces while 
the length of the steel cable 
remains constant forming an 
arc. The three tensional strings 
were separated by 120° along 
the circumference of the guide 
to control the tail's two degrees 
of freedom. Tension was ap-
plied to each string using the 
shaft of a Solarbotics motor as 
a winch mechanism. The mo-
tors and the steel cable were 
both mounted to a base plate 
that served as the base of the 
tail. The default gear ratio was 

reduced by removing a gear stage to facilitate 

Ever thought that a prehensile tail would be 
useful? The potential applications span from 
enhanced physical agility to social expression 
to a simple 'helping hand'. A longtime dream 
of mine has been to construct a robotic tail 
controlled by signals from elec-
tromyography (EMG) using 
skin-surface electrodes. EMG-
based control of prosthetic 
limbs has a long history and 
is being developed for future 
tele-operated robotic actua-
tors for use in space and other 
hazardous environments. Be-
cause EMG measures muscle 
activation, the signal represents 
the force that the muscle is 
exerting on the body and the 
environment.

At this summer’s Telluride 
Neuromorphic Engineering 
Workshop, a team of enthu-
siastic participants decided to 
attempt a proof-of-concept 
project, demonstrating a sim-
ple two-channel (four-state) 
tail control. Our project con-
sisted of three components: 
EMG signal detection, signal 
processing/command recognition, and the 
motorized tail. Our team consisted of: 
Pamela Abshire (University Maryland), 
Chris Assad (Jet Propulsion Laboratory), 
Rodrigo Alvarez (University 
of Pennsylvania), Lena Ting 
(Georgia Institute of Tech-
nology), Nima Mesgarani 
(University of Maryland), and 
Massimiliano Giulioni (Italian 
Institute of Health).

EMG signals measured on 
the skin surface over an active 
muscle can be as large as a few 
millivolts in amplitude, with 
frequencies mainly between 
20-400Hz. They are typically 
measured with two skin elec-
trodes placed along the length 
of the muscle and a high-input-
impedance differential ampli-
fi er. A low-impedance ground 
electrode is placed on the body 
surface away from the muscle 
to control the common-mode 
voltage for the amplifi er. Most 
clinical (commercial) systems use standard-
ized wet electrodes (Ag/AgCl), each with an 
adhesive patch to hold it and the conductive 

An electromyography-controlled tail

Figure 2. The tail mechanism included three 
motors in the base, each pulling a string that 
bent the tail towards its side.

gel securely against the skin surface. While 
we successfully designed and tested our own 
amplifi ers, we ultimately used two commer-
cial amplifi ers that had better noise charac-
teristics and could be connected directly 

Horiuchi, continued on p. 7

Figure 1. The lower trace shows the amplifi ed 
raw electromyography (EMG) signal from 
electrodes placed on the forearm. The upper 
trace shows the EMG signal after envelope 
detection and low-pass fi ltering.
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passive back-driving of the motor.
The three motors were driven by one of 

three possible EMG commands: a left muscle 
contraction drove the left motor to pull, 
a right muscle contraction drove the right 
motor to pull, and co-contraction of the back 
muscles drove the third (downward) motor 
to pull. The three motors were connected 
in a star confi guration with a common node 
in the center. When one motor was driven 
in the pulling direction, the current fl owed 
through the motor towards the center of the 
star and then outward through the two other 
motors in the releasing direction.  The pull-
ing motor bent the tail and the other motors 
weakly released their strings. This system, 
while clever, suffered from both weak motor 
strength and frictional imbalances producing 
either too much or too little tension.

The final system (see Figure 3) was 
'portable', consisting of a laptop, USB-based 
ADC, batteries, and a tangle of wires. The 
tail mechanism was mounted on a com-
mercial lower-back support product. The 
tail would wag 
naturally while 
walking, due to 
the alternating 
muscle activa-
tions with each 
step. Leaning for-
ward or deliberate 
stomach-muscle 
contractions pro-
duced back muscle 
co-contractions 
that pulled the tail 
down. Though it 
worked well, the 
lack of proprio-
ceptive or visual 
feedback made tail 
control somewhat 
confusing. 

This project 
i n i t i a t ed  new 
ideas about how 
to use many more 
electrodes and 
signal-separation 
techniques to re-
solve the signals 
of muscle subsets 
that are currently 
blurred together 
on a single set of 
electrodes. The 

signal-to-noise ratio of the back-muscle 
measurements were quite high, which al-
lowed a close look at the complex muscle 
activations that underlie balance and posture 
in humans.

Quicktime movies of the tail in action,1
and another interesting EMG-driven tail 
project,2 are available online.

Timothy Horiuchi
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Figure 3. Left: Differential electrode signals from the lower back muscles were locally amplifi ed and digitized by an external 
ADC. A laptop performed the signal processing and sent the digital commands to the tail motors.  Right: The tail mechanism 
was then mounted on the lower back with wires running to a laptop for control.
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be set with an 8bit excitatory (or inhibitory) 
weight that modulates the currents charging 
(or discharging) the membrane capacitance. 
The chip can output spikes or pacemaker-
type signals depending on the value set on 
the on-chip pulse width tuner. A refractory 
period modulator, fi nally, prevents the mem-
brane capacitance from charging up for an 
amount of time dictated by the modulator. 
CPG-type signals can thus be created using 
the neurons as pacemaker cells or in a spiking 
confi guration.

The key aspect of these signals is that they 
must be frequency-locked and out-of phase 
by any arbitrary degree.12 In a typical human 
walking motion, for example, the hips are 
180° out-of-phase between each other and 
the knees are 90° out-of-phase with the ip-
silateral hip. Different gaits, in turn, require 
the limbs to have different phase relation-
ships. The chip was used by the locomotion 
workgroup to create various such waveforms 
(see Figure 2), and tuned with appropriate 
weights to create a human-like walking gait 
for the Snappy robot, developed at Iguana 
Robotics, Inc.. Each motor on the robot’s 
hips and knees requires direction and speed 
information to fi x the robot’s overall gait and 
velocity. To generate the direction signals 
for the motors, pacemaker neurons were set 

up to form the signals as described above, 
so all the outputs were frequency-locked 
and out-of-phase by appropriate amounts 
to achieve a quasi-human walking gait. The 
signals thus generated allowed the robot to 
be controlled open loop. Continuing efforts 
by various group members after the end of 
the workshop should soon be able to show 
that all four limbs can be properly controlled 
and with different gaits.
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has been collected, the pixel values of the 
fi ltered image are thresholded to eliminate 
noise. The result is the desired orientation 
fi ltered image, and the Matlab scripts demon-
strates that the algorithm functions correctly 
even in the presence of noise.

In future, we plan to include implemen-
tation of the fi lter kernels in a multitude of 
motes to perform the distributed fi lter.

This work was conducted during the recent 
workshop on Neuromorphic Engineering at 
Telluride,CO.
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be able to process a video stream at 30fps 
and at VGA resolution of 640×480 pixels 
(R, G, and B colors at 8bits/color/pixel), 
outputting the coordinates of the most sa-
lient pixel. Our current design exceeds that 
specifi cation by processing composite video 
at 720×525 pixels and 30fps. The hardware 
was composed using modular elements that 
implement color-space conversion, Gauss-
ian fi ltering, interpolation, decimation, and 
basic image arithmetic transformations, in 
addition to support for mapping image 
streams to and from an external memory. 
The computation of saliency is performed 
in a series of steps where intermediate 
'maps' of the image are created by series of 
transformations. 

The incoming video stream (see Figure 
1) is fi rst de-interlaced by a write-read oper-
ation through the external synchronous dy-
namic random-access memory (SDRAM). 
The de-interlaced image is then separated 
into its constituent components, which are 
post-processed to compute red-green and 
blue-yellow color opponencies, luminance, 
and orientation-fi ltered streams. Gaussian 
pyramids are generated for the incoming 
streams where each pyramid level is com-
puted by successively low-pass fi ltering and 
subsampling the previous level. We have 
developed an architecture that computes the 

LABORATORY NOTES
Saliency on a chip: a digital approach with an FPGA
Selective-visual-attention algorithms have 
been successfully implemented in analog 
VLSI circuits.1 However, in addition to 
the usual issues of analog VLSI—such as 
the need to fi ne-tune a large number of bi-
ases—these implementations lack the spatial 
resolution and pre-processing capabilities 
to be truly useful for image-processing 
applications. Here we take an alternative 
approach and implement a neuro-mimetic 
algorithm for selective visual attention in 
digital hardware.

The overarching aim of this project 
is to demonstrate the feasibility of using 
programmable logic for aiding the de-
velopment and acceleration of image and 
video processing applications in vision. 
Saliency was picked as a design driver for 
this purpose so that the design fl ow could be 
understood and added to the neuromorphic 
engineer’s bag of tricks. The data-intensive 
and computationally challenging nature of 
the human visual attention system makes it 
an interesting algorithm for this study. 

Itti, Koch, and Niebur2 have suggested 
an influential model for saliency-based 
bottom-up visual attention and applied it 
successfully to a variety of visual tasks. The 
model attempts to represent visual attention 
in a computationally-effi cient manner. The 
existing software implementation of this 
model, on a personal 
computer, runs at 
30 frames per sec-
ond (fps) at quarter-
VGA (320×240) 
resolution.3 Field-
programmable gate 
arrays (FPGAs), on 
the other hand, offer 
an elegant solution 
to implementing the 
saliency computa-
tion in hardware, 
taking full advantage 
of the data paral-
lelism available in 
the image process-
ing operations.4 The 
reprogrammable na-
ture of the FPGAs 
provides for a quick, 
cheap platform for 
prototyping and de-
bugging, and greatly 
simplifies develop-
ment.

We wanted to Figure 1: Block diagram of the FPGA saliency implementation.

entire pyramid with a single fi lter kernel by 
time multiplexing the different scales/levels 
of the pyramid and buffering them into a 
single dual-ported memory using a special-
ized, mutually exclusive write addressing 
scheme.

The fi ltered data is then buffered in 
the off-chip SDRAM due to the on-chip 
memory capacity constraints of the FPGA. 
Feature maps are created next by calculat-
ing the difference of chosen pairs of center 
(fi ner) and surround (coarser) spatial scales. 
The latter is fi rst scaled up by stretching it 
to the fi ner scale followed by point-wise 
subtraction of the two streams. Merging 
the different center-surround scales by 
decimating all the streams to a specific 
scale4 and performing point-wise addition 
gives us ‘conspicuity maps’. These are then 
normalized with the global maximum of 
the previous image (as an approximation 
to the global maximum of the current im-
age, for effi ciency). The fi nal saliency map 
is produced by merging the intensity, color, 
and orientation streams, and is processed to 
compute the most salient point. 

The Berkeley development board5—
with its video support, decent-sized Xilinx 
FPGA and generous amount of SDRAM, 
see Figure 2—was used as the platform 
for developing the saliency algorithm. 

A key contribution 
of this research was 
the design of a de-
centralized memory 
controller for map-
ping streams to an 
external memory and 
a modular method 
for plugging in new 
streams. An area- 
and memory-effi-
cient mechanism for 
computing Gaussian 
pyramids was also 
demonstrated. 

Much work con-
cerning the imple-
mentation of the 
entire design stack 
needs to be done 
before more con-
clusive lessons can 
be learned, but we 
hope this project will 
eventually  provide 

Kapre, continued on p. 11
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The circuit shown in Figure 
1 generates the bias currents, 
all of which are produced by 
dividing down a single master 
current Im using a current-
splitter network. These smaller 
currents can then be copied or 
scaled with current mirrors, or 
passed through a differential 
pair to provide a variable bias 
in a particular current range.

The master current Im is 
generated by the familiar boot-
strapped current reference 
attributed to Widler and fi rst 
reported in CMOS by Vittoz 
et al..2 Transistors Mn1 and 
Mn2 have a gain ratio (Wn1/
Ln1)/(Wn2)/(Wn2)/(W /Ln2)=M. Since the 
currents in the two branches 
are forced to be the same by 
the mirror Mp1-Mp2, the Mn
current density ratios set up 

p1
current density ratios set up 

p1 p2
current density ratios set up 

p2

a difference in their gate-source voltage, 
which is expressed across the load R. Resis-
tance R and ratio M determine the current. M determine the current. M
The master current Im—which fl ows in the 
loop—is computed by equating the currents 
in the two branches. In subthreshold, this 
yields the remarkably simple yet accurate 
formula:

With ideal transistors, Im does not de-
pend on the supply or threshold voltages, 

but is monotonic 
in temperature (ap-
proximately PTAT, 
propor t iona l  to 
absolute tempera-
ture, in subthresh-
old). In reality, it 
is slightly affected 
by the supply volt-
age through drain 
conductance, and 
also by mismatch of 
the threshold volt-
age and β between 
the transistors in the 
current mirrors.

The ratio M is M is M
not critical as long 
as it is substantially 
larger than 1. We 
have used values 
from 20 to 120. A 
very large ratio can 

destabilize the circuit through the parasitic 
capacitance CR on VR on VR R. A common error in 
this circuit is to have too much capacitance 
to ground at VR; this excessive capacitance 
causes large-signal limit-cycle oscillations. 
The circuit can be stabilized by making the 
compensation capacitor Cn several times CR. 
In practice, we usually bring out Vn to en-
sure that the master bias can be stabilized.

A startup circuit is necessary to avoid 
the stable zero-current operating point. 
Transistors Mk1, Mk2, Mpd, and MOS ca-
pacitors Ck1 and Ck2 enable the startup and 

pd
 enable the startup and 

pd

power control functionality. Vpd allows for pd allows for pd
soft power control and is tied to ground for 

pd
soft power control and is tied to ground for 

pd

normal operation. Raising Vpdnormal operation. Raising Vpdnormal operation. Raising V  to Vdd turns pd to Vdd turns pd
off the master bias and the derived biases, 

pd
off the master bias and the derived biases, 

pd

and returning Vpd to ground turns the bias pd to ground turns the bias pd
generator back on.

pd
generator back on.

pd

The master current is copied to a Bult 
and Geelen3 current splitter and divided 
successively by it to form a geometrically-
spaced series of smaller currents. At each 
branch, a fi xed fraction of the current is split 
off, while the rest continues to later stages. 
The last stage is sized to terminate the line as 
though it were infi nitely long. The current 
splitter principle accurately splits currents 
over all operating ranges from weak to 
strong inversion, independent of everything 
but the effective device geometry. Figure 1 
shows an R-2R splitter—built from unit 
transistors—that splits by octaves. The 

Analog or mixed-signal CMOS chips usually 
require a number of fi xed reference currents 
for biasing amplifi ers, determining time 
constants and pulse widths, powering loads 
for static logic, and so forth. The required 
currents can span a wide range: if the dy-
namics of the circuits span timescales from 
nanoseconds to seconds, for instance. Often, 
in experimental chips, these references are 
left out because designers assume that these 
‘standard’ circuits could be easily added in a 
later revision. As a result, chips are designed 
that must be individually tuned for correct 
operation with a multitude of external pots 
to set gate voltages. The required voltages, 
unfortunately, depend on chip-to-chip vari-
ation in threshold voltage, and secondary 
users must be tutored on the tuning of the 
parameters. Moreover, the very-small bias 
currents that are often needed in these chips 
are problematic to generate externally. 

We have developed a toolkit that allows 
the designer to automatically generate the 
schematics and layout of a bias generator 
circuit, using the Tanner EDA tools.1 The 
bias generator derives a wide-ranging set 
of fi xed bias currents from a single master, 
and the desired bias currents are specifi ed 
in the schematic, using parameter cells. 
A compiler parses the netlist from the 
schematic, computes the range of biases, 
the number of required splitter cells, and 
the master bias current. It then builds the 
layout of the complete generator using a set 
of predefi ned cells combined with generated 
routing. The cells are constructed to be used 
with MOSIS-scalable λ-based design rules, 
with two metal single-poly processes.

LABORATORY NOTES
A bias-current-generators toolkit

m
ln( ) ,T

T

U kTI M U qR
� �

Figure 1: Bias generator circuits. Transistor sizes are in units of λ (scalable parameter). All 
sizes are 24/6 unless listed above. Ck1sizes are 24/6 unless listed above. Ck1sizes are 24/6 unless listed above. C  and Ck2 and Ck2 and C  are MOS capacitors. M2R are MOS capacitors. M2R are MOS capacitors. M  are unit transistors.

Transistor W/L

Mn2
24/6

Mn1 M*24/6

Mp1p1, Mp2p2, Mp3p3
76/65

hMc1, Mc2
24/6

Ck1,Ck2
132/20

M 40

MR, M2R
24/12

Mpdpd, Mk1, Mk2
6/6

Capacitance

Cn
~10pF

Ck1,Ck2 ~1pF
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a reusable image-processing core for other 
saliency-based applications that might ben-

Figure 2: Photo of the Berkeley development 
board.

Kapre, Continued from p. 9
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splitter has N stages; the current at the N stages; the current at the N kth

stage is Im/2m/2m
k. 

We have used these bias generators 
in several generations of CMOS process 
technology (1.6µm, 0.8µm, and 0.35µm) 
with no striking differences in performance. 
Here we show a result from a bias genera-
tor with a 20-stage octave splitter built in a 
0.35µm process using the design kit. Figure 

Figure 2: Behavior of the octave splitter.

2 shows the measure output currents of the 
octave splitter biased with a single generated 
master bias current of 10 µA. It is amazingly 
ideal over 20 octaves (six decades) spanning 
strong to weak inversion. A current of 10pA 
is reliably generated from a master current 
of 10µA. For more details of the bias gen-
erator, the design kit, and measurements, 
readers are referred to References 1 and 4.
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efi t from accelerated saliency computation. 
The long-term aim is to put a design fl ow in 
place that reuses off-the-shelf components, 
with saliency being the fi rst of a series of 
basic neuromorphic image-processing 
operators that can be reused. However, far 
more needs to be done to tackle the issues 
of design complexity and development time 
before widespread use of programmable 
logic becomes a reality in this potentially-
rich application area.
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When the Sony AIBO entertainment robot 
made its commercial debut in 1999, an 
initial run of 3,000 were snapped up by 
Japanese consumers in under 20 minutes. 
Another 2,000 earmarked for the American 
market sold out within four days. Since 
then, Sony has launched several new genera-
tions of the robot, improving their capabili-
ties while lowering the price. Over 100,000 
have been sold to date.

The AIBO is an attractive platform for 

LABORATORY NOTES
Tekkotsu: a Sony AIBO application development framework 

Figure 1: An AIBO being trained on the XOR task, using a colored ball as the stimulus.

available for free to the general public. 
Many researchers remain unaware of this 
development.

The AIBO SDK offers a documented 
interface to OPEN-R, Sony's proprietary 
software architecture that runs on top of 
Aperios, a real-time operating system. Ad-
ditional software for vision and locomotion 
is available from various robosoccer teams 
who have released their code under the 
GPL (General Public License GNU).1 But 

as Motion.
Tekkotsu's event router architecture 

provides a simple, easy-to-learn interface 
for communication among Behaviors and 
MotionCommands. Sensor events, timer 
expirations, and the completion of Motion-
Commands all generate event notifi cations 
to which any Behavior can subscribe. The Behavior can subscribe. The Behavior
‘vision pipeline’, running in Main, offers 
multiple event streams of images at various 
resolutions and stages of processing, while 
a lazy evaluation discipline ensures that im-
ages are only generated for streams where 
a Behavior is listening. Other important 
Tekkotsu features include substantial kine-
matics support, and a collection of remote 
monitoring and teleoperation tools written 
in Java that can be run on any personal 
computer with a wireless connection.

Using Tekkotsu, we have implemented 
a neuromorphic learning algorithm on the 
AIBO: a combination of confi gural and 
temporal difference (TD) learning2 that 
allows the robot to learn appropriately-
timed responses in an exclusive-OR task 
(see Figure 1.)

We are currently developing an even-
higher-level set of primitives intended to 
support a new course in Cognitive Robotics 
that will be offered at Carnegie Mellon in 
2006. These primitives draw inspiration 
from ideas in cognitive science, such as 
‘visual routines’ (Ullman), ‘dual coding 
representations’ (Paivio), and ‘affordances’ 
for object manipulation (Gibson). Our in-
tent is to demonstrate a new style of robot 
programming at a higher level of abstraction 
than is common in robotics today.

Tekkotsu is open source, licensed to the 
public under the LGPL (Lesser General 
Public License GNU),1 and available for free 
at the Tekkotsu.org web site.3 The initial 
development of Tekkotsu was funded by a 
grant from the Sony Corporation.
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robotics research because it combines sub-
stantial on-board processing power, a rich 
sensor array, remote monitoring via wireless 
Ethernet, and programmability using stan-
dard C++. The latest model, the ERS-7, 
includes a 576MHz RISC processor, 64MB 
of main memory, a color CCD camera, three 
infrared range sensors, a three-axis acceler-
ometer/gravity sensor, stereo microphones, 
audio output, and an array of buttons and 
light-emitting diodes on the robot's body. 
The body has 18 degrees of freedom: three 
in each leg, four in the neck and head, and 
two in the tail. List price is $1799; academic 
discounts are available.

The AIBO was not immediately ad-
opted by computer scientists and robotics 
researchers because, initially, it was not 
user-programmable. Only a few universities 
were granted access to AIBO development 
tools, under nondisclosure agreements, to 
allow them to compete in the Robosoccer 
legged robot league that Sony sponsors. But 
the situation changed in 2002, when Sony 
made the system development kit (SDK) 

more tools are needed to simplify the task 
of programming this complex device.

Tekkotsu is an object-oriented applica-
tion development framework for the AIBO 
that provides an additional layer of abstrac-
tion above OPEN-R. (Tekkotsu literally 
means iron bones in Japanese, and refers to 
a metal framework such as the skeleton of a 
building.) Because it makes extensive use of 
C++ templates and inheritance, application 
developers can create their own custom-
ized facilities without having to change the 
Tekkotsu source code. They simply defi ne 
subclasses that inherit from the Tekkotsu 
base classes, overriding any member func-
tions that require customization.

A Tekkotsu application is organized as 
a collection of Behaviors and MotionCom-
mands. Their member functions run in two 
cooperating processes, Main and Motion. 
Main handles perception and decision 
making, while Motion is concerned with 
realtime control of effectors. A third pro-
cess, SoundPlay, handles audio output, and 
operates under the same realtime constraints 


